493 research outputs found

    IV.—On the District of the Ancient Glaciers of the Isar and of the Linth

    Get PDF
    In order to interchange our views, and arrive at a common understanding on the question of the connection of glaciers with the formation of lakes, we undertook a joint excursion in Upper Bavaria, in the district of the Ammer Lake, Wuerm Lake, Staffel Lake, and Eieg Lake, and later, in the month of September, we visited together the shores of the Lake of Zurich, partly accompanied by Dr. K. I. V. Steenstrup, of Copenhagen, Dr. A. Wettstein and Dr. E. Brueckner, of Hamburg. We have drawn up a short protocol, both on the facts observed and of our views respecting them, which we here propose to communicat

    A new radiocarbon chronology of Baumkirchen, stratotype for the onset of the Upper Wurmian in the Alps

    Get PDF
    ABSTRACTThe start of the Upper Wurmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Wurmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re-sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40-year-old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 C-14 ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653-681 m in the clay pit was deposited 34-36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32-33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. </p

    Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars

    Get PDF
    Stepped fan deposits and phyllosilicate mineralogies are relatively common features on Mars but have not previously been found in association with each other. Both of these features are widely accepted to be the result of aqueous processes, but the assumed role and nature of any water varies. In this study we have investigated two stepped fan deposits in Coprates Catena, Mars, which have a genetic link to light-toned material that is rich in Fe–Mg phyllosilicate phases. Although of different sizes and in separate, but adjacent, trough-like depressions, we identify similar features at these stepped fans and phyllosilicates that are indicative of similar formation conditions and processes. Our observations of the overall geomorphology, mineralogy and chronology of these features are consistent with a two stage formation process, whereby deposition in the troughs first occurs into shallow standing water or playas, forming fluvial or alluvial fans that terminate in delta deposits and interfinger with interpreted lacustrine facies, with a later period of deposition under sub-aerial conditions, forming alluvial fan deposits. We suggest that the distinctive stepped appearance of these fans is the result of aeolian erosion, and is not a primary depositional feature. This combined formation framework for stepped fans and phyllosilicates can also explain other similar features on Mars, and adds to the growing evidence of fluvial activity in the equatorial region of Mars during the Hesperian and Amazonian

    Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: new evidence for late Pleistocene climate

    Get PDF
    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity

    Chronological variations in handaxes: patterns detected from fluvial archives in north-west Europe

    Get PDF
    The use of handaxe morphology as a cultural and temporal marker within the Quaternary Lower–Middle Palaeolithic record has had a very chequered history, and abuses in the past have led recent generations of archaeologist to reject it out of hand. In Britain, however, advances in dating Pleistocene sediments, setting their ages within a framework of ∼11 glacial–interglacial cycles over the past 1 Ma, has revealed several patterns in technology and morphology that must be related to changing practices and cultural preferences over time. These are not predictable, nor are they linear, but nevertheless they may aid understanding of the movements of different peoples in and out of Britain over the past 500 000 years. It is also clear that such patterns are to be expected over a much wider region of the nearby continent, although they might not be identical, or even similar, to those established for southern Britain. This paper extends from explanation of the British patterns to an exploration of the extent to which something comparable can be recognized in neighbouring areas of continental Europe: a baseline for a planned collaborative survey of data from the Acheulean of north-west European river systems

    Quaternary glacial history of the Mediterranean mountains

    Get PDF
    Glacial and periglacial landforms are widespread in the mountains of the Mediterranean region. The evidence for glacial and periglacial activity has been studied for over 120 years and it is possible to identify three phases of development in this area of research. First, a pioneer phase characterized by initial descriptive observations of glacial landforms; second, a mapping phase whereby the detailed distribution of glacial landforms and sediments have been depicted on geomorphological maps; and, third, an advanced phase characterized by detailed understanding of the geochronology of glacial sequences using radiometric dating alongside detailed sedimentological and stratigraphical analyses. It is only relatively recently that studies of glaciated mountain terrains in the Mediterranean region have reached an advanced phase and it is now clear from radiometric dating programmes that the Mediterranean mountains have been glaciated during multiple glacial cycles. The most extensive phases of glaciation appear to have occurred during the Middle Pleistocene. This represents a major shift from earlier work whereby many glacial sequences were assumed to have formed during the last cold stage. Glacial and periglacial deposits from multiple Quaternary cold stages constitute a valuable palaeoclimatic record. This is especially so in the Mediterranean mountains, since mountain glaciers in this latitudinal zone would have been particularly sensitive to changes in the global climate system. © 2006 Edward Arnold (Publishers) Ltd
    corecore