401 research outputs found

    Observational analytic studies in multiple sclerosis: controlling bias through study design and conduct. The Australian Multicentre Study of Environment and Immune Function

    Get PDF
    Rising multiple sclerosis incidence over the last 50 years and geographic patterns of occurrence suggest an environmental role in the causation of this multifactorial disease. Design options for epidemiological studies of environmental causes of multiple sclerosis are limited by the low incidence of the disease, possible diagnostic delay and budgetary constraints. We describe scientific and methodological issues considered in the development of the Australian Multicentre Study of Environment and Immune Function (the Ausimmune Study), which seeks, in particular, to better understand the causes of the well-known MS positive latitudinal gradient. A multicentre, case-control design down the eastern seaboard of Australia allows the recruitment of sufficient cases for adequate study power and provides data on environmental exposures that vary by latitude. Cases are persons with an incident first demyelinating event (rather than prevalent multiple sclerosis), sourced from a population base using a two tier notification system. Controls, matched on sex, age (within two years) and region of residence, are recruited from the general population. Biases common in case-control studies, eg, prevalence-incidence bias, admission-rate bias, non-respondent bias, observer bias and recall bias, as well as confounding have been carefully considered in the study design and conduct of the Ausimmune Study

    An analytical continuum model for axially loaded end-bearing piles in inhomogeneous soil

    Get PDF
    © 2019 John Wiley & Sons, Ltd. An approximate static solution is derived for the elastic settlement and load-transfer mechanism in axially loaded end-bearing piles in inhomogeneous soil obeying a power law variation in shear modulus with depth. The proposed generalised formulation can handle different types of soil inhomogeneity by employing pertinent eigenexpansions of the dependent variables over the vertical coordinate, in the form of static soil “modes”, analogous to those used in structural dynamics. Contrary to available models for homogeneous soil, the associated Fourier coefficients are coupled, obtained as solutions to a set of simultaneous algebraic equations of equal rank to the number of modes considered. Closed-form solutions are derived for the (1) pile head stiffness; (2) pile settlement, axial stress, and side friction profiles leading to actual, depth-dependent Winkler moduli, (3) displacement and stress fields in the soil; and (4) average, depth-independent Winkler moduli to match pile head settlement. The predictive power of the model is verified via comparisons against finite element analyses. The applicability to inhomogeneous soil of an existing regression formula for the average Winkler modulus is explored.status: publishe

    Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    Get PDF
    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √ s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two
    corecore