2,932 research outputs found

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments

    Deep learning for extracting protein-protein interactions from biomedical literature

    Full text link
    State-of-the-art methods for protein-protein interaction (PPI) extraction are primarily feature-based or kernel-based by leveraging lexical and syntactic information. But how to incorporate such knowledge in the recent deep learning methods remains an open question. In this paper, we propose a multichannel dependency-based convolutional neural network model (McDepCNN). It applies one channel to the embedding vector of each word in the sentence, and another channel to the embedding vector of the head of the corresponding word. Therefore, the model can use richer information obtained from different channels. Experiments on two public benchmarking datasets, AIMed and BioInfer, demonstrate that McDepCNN compares favorably to the state-of-the-art rich-feature and single-kernel based methods. In addition, McDepCNN achieves 24.4% relative improvement in F1-score over the state-of-the-art methods on cross-corpus evaluation and 12% improvement in F1-score over kernel-based methods on "difficult" instances. These results suggest that McDepCNN generalizes more easily over different corpora, and is capable of capturing long distance features in the sentences.Comment: Accepted for publication in Proceedings of the 2017 Workshop on Biomedical Natural Language Processing, 10 pages, 2 figures, 6 table

    Field-effect mobility enhanced by tuning the Fermi level into the band gap of Bi2Se3

    Full text link
    By eliminating normal fabrication processes, we preserve the bulk insulating state of calcium-doped Bi2Se3 single crystals in suspended nanodevices, as indicated by the activated temperature dependence of the resistivity at low temperatures. We perform low-energy electron beam irradiation (<16 keV) and electrostatic gating to control the carrier density and therefore the Fermi level position in the nanodevices. In slightly p-doped Bi2-xCaxSe3 devices, continuous tuning of the Fermi level from the bulk valence band to the band-gap reveals dramatic enhancement (> a factor of 10) in the field-effect mobility, which suggests suppressed backscattering expected for the Dirac fermion surface states in the gap of topological insulators
    corecore