7,680 research outputs found
Unsupervised binning of environmental genomic fragments based on an error robust selection of l-mers
BACKGROUND: With the rapid development of genome sequencing techniques, traditional research methods based on the isolation and cultivation of microorganisms are being gradually replaced by metagenomics, which is also known as environmental genomics. The first step, which is still a major bottleneck, of metagenomics is the taxonomic characterization of DNA fragments (reads) resulting from sequencing a sample of mixed species. This step is usually referred as 'binning'. Existing binning methods are based on supervised or semi-supervised approaches which rely heavily on reference genomes of known microorganisms and phylogenetic marker genes. Due to the limited availability of reference genomes and the bias and instability of marker genes, existing binning methods may not be applicable in many cases. RESULTS: In this paper, we present an unsupervised binning method based on the distribution of a carefully selected set of l-mers (substrings of length l in DNA fragments). From our experiments, we show that our method can accurately bin DNA fragments with various lengths and relative species abundance ratios without using any reference and training datasets. Another feature of our method is its error robustness. The binning accuracy decreases by less than 1% when the sequencing error rate increases from 0% to 5%. Note that the typical sequencing error rate of existing commercial sequencing platforms is less than 2%. CONCLUSIONS: We provide a new and effective tool to solve the metagenome binning problem without using any reference datasets or markers information of any known reference genomes (species). The source code of our software tool, the reference genomes of the species for generating the test datasets and the corresponding test datasets are available at http://i.cs.hku.hk/alse/MetaCluster/.published_or_final_versio
Response of spectral reflectances and vegetation indices on varying juniper cone densities
Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen-discharging male juniper cones within a juniper canopy. This was done through a controlled outdoor experiment involving ASD FieldSpec Pro Spectroradiometer measurements over juniper canopies of varying cone densities. Broadband and narrowband spectral reflectance and vegetation index (VI) patterns were evaluated as to their sensitivity and their ability to discriminate the presence of cones. The overall aim of this research was to assess remotely sensed phenological capabilities to detect pollen-bearing juniper trees for public health applications. A general decrease in reflectance values with increasing juniper cone density was found, particularly in the Green (545-565 nm) and NIR (750-1,350 nm) regions. In contrast, reflectances in the shortwave-infrared (SWIR, 2,000 nm to 2,350 nm) region decreased from no cone presence to intermediate amounts (90 g/m2) and then increased from intermediate levels tothe highest cone densities (200 g/m2). Reflectance patterns in the Red (620-700 nm) were more complex due to shifting contrast patterns in absorptance between cones and juniper foliage, where juniper foliage is more absorbing than cones only within the intense narrowband region of maximum chlorophyll absorption near 680 nm. Overall, narrowband reflectances were more sensitive to cone density changes than the equivalent MODIS broadbands. In all VIs analyzed, there were significant relationships with cone density levels, particularly with the narrowband versions and the two-band vegetation index (TBVI) based on Green and Red bands, a promising outcome for the use of phenocams in juniper phenology trait studies. These results indicate that spectral indices are sensitive to certain juniper phenologic traits that can potentially be used for juniper cone detection in support of public health applications. © 2013 by the authors
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
How early can myocardial iron overload occur in Beta thalassemia major?
BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM.
METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload.
CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
Modeling and analysis of energy distribution networks using switched differential systems
It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft on the occasion of his 60th birthday. We study the dynamics of energy distribution networks consisting of switching power converters and multiple (dis-)connectable modules. We use parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads. Elements of the behavioral system theory such as linear differential behaviors and quadratic differential forms are crucial in our analysis
Exponential ergodicity of the jump-diffusion CIR process
In this paper we study the jump-diffusion CIR process (shorted as JCIR),
which is an extension of the classical CIR model. The jumps of the JCIR are
introduced with the help of a pure-jump L\'evy process . Under
some suitable conditions on the L\'evy measure of , we derive a
lower bound for the transition densities of the JCIR process. We also find some
sufficient condition guaranteeing the existence of a Forster-Lyapunov function
for the JCIR process, which allows us to prove its exponential ergodicity.Comment: 14 page
Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping
This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results
Microscopic Realization of the Kerr/CFT Correspondence
Supersymmetric M/string compactifications to five dimensions contain BPS
black string solutions with magnetic graviphoton charge P and near-horizon
geometries which are quotients of AdS_3 x S^2. The holographic duals are
typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These
same 5D compactifications also contain non-BPS but extreme Kerr-Newman black
hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying
Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2,
the near-horizon geometry coincides precisely with the right-moving temperature
T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known
dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the
Kerr/CFT correspondence. Moreover, at linear order away from maximality, one
finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution
and the associated thermal CFT entropy reproduces the linearly sub-maximal
Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a
finite-temperature quotient of a warped deformation of the magnetic string
geometry. The corresponding dual deformation of the magnetic string CFT
potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by
Kerr/CFT.Comment: 18 pages, no figure
Fluctuations in granular gases
A driven granular material, e.g. a vibrated box full of sand, is a stationary
system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such
a system. Here we present numerical and analytical results concerning energy
and injected power fluctuations. In the first part we explain how the study of
the probability density function (pdf) of the fluctuations of total energy is
related to the characterization of velocity correlations. Two different regimes
are addressed: the gas driven at the boundaries and the homogeneously driven
gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of
homogeneity in hydrodynamics profiles, even in the absence of velocity
correlations, the fluctuations of total energy are non-trivial and may lead to
erroneous conclusions about the role of correlations. In the second part of the
chapter we take into consideration the fluctuations of injected power in driven
granular gas models. Recently, real and numerical experiments have been
interpreted as evidence that the fluctuations of power injection seem to
satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an
alternative interpretation of such results which invalidates the
Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and
using techniques from large deviation theory, the general validity of a
Fluctuation Relation for power injection in driven granular gases is
questioned. Finally a functional is defined using the Lebowitz-Spohn approach
for Markov processes applied to the linear inelastic Boltzmann equation
relevant to describe the motion of a tracer particle. Such a functional results
to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
- …
