14,814 research outputs found
Exploring Temporal Preservation Networks for Precise Temporal Action Localization
Temporal action localization is an important task of computer vision. Though
a variety of methods have been proposed, it still remains an open question how
to predict the temporal boundaries of action segments precisely. Most works use
segment-level classifiers to select video segments pre-determined by action
proposal or dense sliding windows. However, in order to achieve more precise
action boundaries, a temporal localization system should make dense predictions
at a fine granularity. A newly proposed work exploits
Convolutional-Deconvolutional-Convolutional (CDC) filters to upsample the
predictions of 3D ConvNets, making it possible to perform per-frame action
predictions and achieving promising performance in terms of temporal action
localization. However, CDC network loses temporal information partially due to
the temporal downsampling operation. In this paper, we propose an elegant and
powerful Temporal Preservation Convolutional (TPC) Network that equips 3D
ConvNets with TPC filters. TPC network can fully preserve temporal resolution
and downsample the spatial resolution simultaneously, enabling frame-level
granularity action localization. TPC network can be trained in an end-to-end
manner. Experiment results on public datasets show that TPC network achieves
significant improvement on per-frame action prediction and competing results on
segment-level temporal action localization
Study of a Flexible UAV Proprotor
This paper is concerned with the evaluation of design techniques, both for the propulsive performance and for the structural behavior of a composite flexible proprotor. A numerical model was developed using a combination of aerodynamic model based on Blade Element Momentum Theory (BEMT), and structural model based on anisotropic beam finite element, in order to evaluate the coupled structural and the aerodynamic characteristics of the deformable proprotor blade. The numerical model was then validated by means of static performance measurements and shape reconstruction from Laser Distance Sensor (LDS) outputs. From the validation results of both aerodynamic and structural model, it can be concluded that the numerical approach developed by the authors is valid as a reliable tool for designing and analyzing the UAV-sized proprotor made of composite material. The proposed experiment technique is also capable of providing a predictive and reliable data in blade geometry and performance for rotor modes
High Curie Temperature Ferromagnetism and High Hole Mobility in Tensile Strained Mn-doped SiGe Thin Films
Diluted magnetic semiconductors (DMSs) based on group-IV materials are
desirable for spintronic devices compatible with current silicon technology. In
this work, amorphous Mn-doped SiGe thin films were first fabricated on Ge
substrates by radio frequency magnetron sputtering and then crystallized by
rapid thermal annealing (RTA). After the RTA, the samples became ferromagnetic
(FM) semiconductors, in which the Curie temperature increased with increasing
Mn doping concentration and reached 280 K with 5% Mn concentration. The data
suggest that the ferromagnetism came from the hole-mediated process and was
enhanced by the tensile strain in the SiGe crystals. Meanwhile, the Hall effect
measurement up to 33 T to eliminate the influence of anomalous Hall effect
(AHE) reveals that the hole mobility of the annealed samples was greatly
enhanced and the maximal value was ~1000 cm2/Vs, owing to the tensile
strain-induced band structure modulation. The Mn-doped SiGe thin films with
high Curie temperature ferromagnetism and high hole mobility may provide a
promising platform for semiconductor spintronics
Spin-flip reflection at the normal metal-spin superconductor interface
We study spin transport through a normal metal-spin superconductor junction.
A spin-flip reflection is demonstrated at the interface, where a spin-up
electron incident from the normal metal can be reflected as a spin-down
electron and the spin will be injected into the spin
superconductor. When the (spin) voltage is smaller than the gap of the spin
superconductor, the spin-flip reflection determines the transport properties of
the junction. We consider both graphene-based (linear-dispersion-relation) and
quadratic-dispersion-relation normal metal-spin superconductor junctions in
detail. For the two-dimensional graphene-based junction, the spin-flip
reflected electron can be along the specular direction (retro-direction) when
the incident and reflected electron locates in the same band (different bands).
A perfect spin-flip reflection can occur when the incident electron is normal
to the interface, and the reflection coefficient is slightly suppressed for the
oblique incident case. As a comparison, for the one-dimensional
quadratic-dispersion-relation junction, the spin-flip reflection coefficient
can reach 1 at certain incident energies. In addition, both the charge current
and the spin current under a charge (spin) voltage are studied. The spin
conductance is proportional to the spin-flip reflection coefficient when the
spin voltage is less than the gap of the spin superconductor. These results
will help us get a better understanding of spin transport through the normal
metal-spin superconductor junction.Comment: 11 pages, 9 figure
- …
