14,814 research outputs found

    Exploring Temporal Preservation Networks for Precise Temporal Action Localization

    Full text link
    Temporal action localization is an important task of computer vision. Though a variety of methods have been proposed, it still remains an open question how to predict the temporal boundaries of action segments precisely. Most works use segment-level classifiers to select video segments pre-determined by action proposal or dense sliding windows. However, in order to achieve more precise action boundaries, a temporal localization system should make dense predictions at a fine granularity. A newly proposed work exploits Convolutional-Deconvolutional-Convolutional (CDC) filters to upsample the predictions of 3D ConvNets, making it possible to perform per-frame action predictions and achieving promising performance in terms of temporal action localization. However, CDC network loses temporal information partially due to the temporal downsampling operation. In this paper, we propose an elegant and powerful Temporal Preservation Convolutional (TPC) Network that equips 3D ConvNets with TPC filters. TPC network can fully preserve temporal resolution and downsample the spatial resolution simultaneously, enabling frame-level granularity action localization. TPC network can be trained in an end-to-end manner. Experiment results on public datasets show that TPC network achieves significant improvement on per-frame action prediction and competing results on segment-level temporal action localization

    Study of a Flexible UAV Proprotor

    Get PDF
    This paper is concerned with the evaluation of design techniques, both for the propulsive performance and for the structural behavior of a composite flexible proprotor. A numerical model was developed using a combination of aerodynamic model based on Blade Element Momentum Theory (BEMT), and structural model based on anisotropic beam finite element, in order to evaluate the coupled structural and the aerodynamic characteristics of the deformable proprotor blade. The numerical model was then validated by means of static performance measurements and shape reconstruction from Laser Distance Sensor (LDS) outputs. From the validation results of both aerodynamic and structural model, it can be concluded that the numerical approach developed by the authors is valid as a reliable tool for designing and analyzing the UAV-sized proprotor made of composite material. The proposed experiment technique is also capable of providing a predictive and reliable data in blade geometry and performance for rotor modes

    High Curie Temperature Ferromagnetism and High Hole Mobility in Tensile Strained Mn-doped SiGe Thin Films

    Full text link
    Diluted magnetic semiconductors (DMSs) based on group-IV materials are desirable for spintronic devices compatible with current silicon technology. In this work, amorphous Mn-doped SiGe thin films were first fabricated on Ge substrates by radio frequency magnetron sputtering and then crystallized by rapid thermal annealing (RTA). After the RTA, the samples became ferromagnetic (FM) semiconductors, in which the Curie temperature increased with increasing Mn doping concentration and reached 280 K with 5% Mn concentration. The data suggest that the ferromagnetism came from the hole-mediated process and was enhanced by the tensile strain in the SiGe crystals. Meanwhile, the Hall effect measurement up to 33 T to eliminate the influence of anomalous Hall effect (AHE) reveals that the hole mobility of the annealed samples was greatly enhanced and the maximal value was ~1000 cm2/Vs, owing to the tensile strain-induced band structure modulation. The Mn-doped SiGe thin films with high Curie temperature ferromagnetism and high hole mobility may provide a promising platform for semiconductor spintronics

    Spin-flip reflection at the normal metal-spin superconductor interface

    Full text link
    We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin 2×/22\times \hbar/2 will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.Comment: 11 pages, 9 figure
    corecore