99,932 research outputs found

    A Novel Stealthy Target Detection Based on Stratospheric Balloon-borne Positional Instability due to Random Wind

    Get PDF
    A novel detection for stealthy target model F-117A with a higher aspect vision is introduced by using Stratospheric Balloon-borne Bistatic system. The potential problem of proposed scheme is platform instability impacted on the balloon by external wind force. The flight control system is studied in detail under typical random process, which is defined by Dryden turbulence spectrum. To accurately detect the stealthy target model, a real Radar Cross Section (RCS) based on physical optics (PO) formulation is applied. The sensitivity of the proposed scheme has been improved due to increasing PO – scattering field of stealthy model with higher aspect angle comparing to the conventional ground -based system. Simulations demonstrate that the proposed scheme gives much higher location accuracy and reduces location errors

    Mixing Rates of Random Walks with Little Backtracking

    Full text link
    Many regular graphs admit a natural partition of their edge set into cliques of the same order such that each vertex is contained in the same number of cliques. In this paper, we study the mixing rate of certain random walks on such graphs and we generalize previous results of Alon, Benjamini, Lubetzky and Sodin regarding the mixing rates of non-backtracking random walks on regular graphs.Comment: 31 pages; to appear in the CRM Proceedings Series, published by the American Mathematical Society as part of the Contemporary Mathematics Serie

    π\pi-J/ψJ/\psi Correlation and Elliptic Flow Parameter v2v_2 of Charmed Mesons at RHIC Energy

    Full text link
    We study the correlation between the trigger π\pi and the associated J/ψJ/\psi on near and away sides in Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV. In the region of trigger momentum pt>4p_t>4 GeV/cc, the π\pi spectrum is composed of thermal-shower and shower-shower recombinations in the frame work of the recombination model. We consider the azimuthal anisotropy in the quenched hard parton distribution and then calculate the elliptic flow parameter v2v_2 of charmed mesons (J/ψJ/\psi, D0D^0 and DsD_s) for different centralities.Comment: 17 pages, 6 figure

    Blaschke's problem for timelike surfaces in pseudo-Riemannian space forms

    Full text link
    We show that isothermic surfaces and S-Willmore surfaces are also the solutions to the corresponding Blaschke's problem for both spacelike and timelike surfaces in pseudo-Riemannian space forms. For timelike surfaces both Willmore and isothermic, we obtain a description by minimal surfaces similar to the classical results of Thomsen.Comment: 10 page

    Crystal Growth in Fluid Flow: Nonlinear Response Effects

    Full text link
    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends non-monotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.Comment: to appear in Phys. Rev. Material

    Mesons and Nucleons in Soft-Wall AdS/QCD

    Full text link
    We study further the soft-wall AdS/QCD model with a cubic potential for the bulk scalar. We analyze the spectra of pseudoscalar, scalar, vector and axial-vector mesons. We also study the spin-1/2 nucleon spectrum and the pion-nucleon coupling. All of them have a good agreement with the experimental data.Comment: 17 pages. v2: references added, minor improvement, to appear in PR

    AGN Feedback and Bimodality in Cluster Core Entropy

    Full text link
    We investigate a series of steady-state models of galaxy clusters, in which the hot intracluster gas is efficiently heated by active galactic nucleus (AGN) feedback and thermal conduction, and in which the mass accretion rates are highly reduced compared to those predicted by the standard cooling flow models. We perform a global Lagrangian stability analysis. We show for the first time that the global radial instability in cool core clusters can be suppressed by the AGN feedback mechanism, provided that the feedback efficiency exceeds a critical lower limit. Furthermore, our analysis naturally shows that the clusters can exist in two distinct forms. Globally stable clusters are expected to have either: 1) cool cores stabilized by both AGN feedback and conduction, or 2) non-cool cores stabilized primarily by conduction. Intermediate central temperatures typically lead to globally unstable solutions. This bimodality is consistent with the recently observed anticorrelation between the flatness of the temperature profiles and the AGN activity (Dunn & Fabian 2008) and the observation by Rafferty et al. (2008) that the shorter central cooling times tend to correspond to significantly younger AGN X-ray cavities.Comment: 4 pages, to appear in the proceedings of "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", Eds. Sebastian Heinz, Eric Wilcots (AIP conference series

    A quantum reactive scattering perspective on electronic nonadiabaticity

    Full text link
    Based on quantum reactive-scattering theory, we propose a method for studying the electronic nonadiabaticity in collision processes involving electron-ion rearrangements. We investigate the state-to-state transition probability for electron-ion rearrangements with two comparable approaches. In the first approach the information of the electron is only contained in the ground-state Born-Oppenheimer potential-energy surface, which is the starting point of common reactive-scattering calculations. In the second approach, the electron is explicitly taken into account and included in the calculations at the same level as the ions. Hence, the deviation in the results between the two approaches directly reflects the electronic nonadiabaticity during the collision process. To illustrate the method, we apply it to the well-known proton-transfer model of Shin and Metiu (one electron and three ions), generalized by us in order to allow for reactive scattering channels. It is shown that our explicit electron approach is able to capture electronic nonadiabaticity and the renormalization of the reaction barrier near the classical turning points of the potential in nuclear configuration space. In contrast, system properties near the equilibrium geometry of the asymptotic scattering channels are hardly affected by electronic nonadiabatic effects. We also present an analytical expression for the transition amplitude of the asymmetric proton-transfer model based on the direct evaluation of integrals over the involved Airy functions.Comment: 14 page

    Properties of solutions of stochastic differential equations driven by the G-Brownian motion

    Full text link
    In this paper, we study the differentiability of solutions of stochastic differential equations driven by the GG-Brownian motion with respect to the initial data and the parameter. In addition, the stability of solutions of stochastic differential equations driven by the GG-Brownian motion is obtained
    corecore