6,790 research outputs found

    Flexible transistor active matrix array with all screen-printed electrodes

    Get PDF
    Flexible transistor active matrix array is fabricated on PEN substrate using all screen-printed gate, source and drain electrodes. Parylene-C and DNTT act as gate dielectric layer and semiconductor, respectively. The transistor possesses high mobility (0.33 cm2V-1 s-1), large on/off ratio (< 106) and low leakage current (10 pA). Active matrix array consists of 10×10 transistors were demonstrated. Transistors exhibited average mobility of 0.29 cm2V-1s-1 and on/off ratio larger than 104 in array form. In the transistor array, we achieve 75μm channel length and a size of 2 mm × 2 mm for each element in the array which indicates the current screen-printing method has large potential in large-area circuits and display applications. © 2013 SPIE.published_or_final_versio

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Subcutaneous nerve activity is more accurate than heart rate variability in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction

    Get PDF
    BACKGROUND: We recently reported that subcutaneous nerve activity (SCNA) can be used to estimate sympathetic tone. OBJECTIVE: The purpose of this study was to test the hypothesis that left thoracic SCNA is more accurate than heart rate variability (HRV) in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction (MI). METHODS: We used an implanted radiotransmitter to study left stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and thoracic SCNA in 9 dogs at baseline and up to 8 weeks after MI. HRV was determined based on time-domain, frequency-domain, and nonlinear analyses. RESULTS: The correlation coefficients between integrated SGNA and SCNA averaged 0.74 (95% confidence interval [CI] 0.41-1.06) at baseline and 0.82 (95% CI, 0.63-1.01) after MI (P <.05 for both). The absolute values of the correlation coefficients were significantly larger than that between SGNA and HRV analysis based on time-domain, frequency-domain, and nonlinear analyses, respectively, at baseline (P <.05 for all) and after MI (P <.05 for all). There was a clear increment of SGNA and SCNA at 2, 4, 6, and 8 weeks after MI, whereas HRV parameters showed no significant changes. Significant circadian variations were noted in SCNA, SGNA, and all HRV parameters at baseline and after MI, respectively. Atrial tachycardia (AT) episodes were invariably preceded by SCNA and SGNA, which were progressively increased from 120th, 90th, 60th, to 30th seconds before AT onset. No such changes of HRV parameters were observed before AT onset. CONCLUSION: SCNA is more accurate than HRV in estimating cardiac sympathetic tone in ambulatory dogs with MI

    Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly.

    Get PDF
    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein

    Small Conductance Calcium-Activated Potassium Current is Activated During Hypokalemia and Masks Short Term Cardiac Memory Induced by Ventricular Pacing.

    Get PDF
    Background: Hypokalemia increases the vulnerability to ventricular fibrillation (VF). We hypothesize that the apamin-sensitive small conductance calcium-activated potassium current (IKAS) is activated during hypokalemia and that IKAS blockade is proarrhythmic. Methods and Results: Optical mapping was performed in 23 Langendorff perfused rabbit ventricles with atrioventricular block and either right ventricular (RV) or left ventricular (LV) pacing during normokalemia or hypokalemia. Apamin prolonged the action potential duration (APD) measured to 80% repolarization (APD80) by 26 ms [95% confidence interval, CI, 14–37] during normokalemia and by 54 ms [CI, 40 to 68] during hypokalemia (P=0.01) at 1000 ms pacing cycle length (PCL). In hypokalemic ventricles, apamin increased the maximal slope of APD restitution, the PCL threshold of APD alternans, the PCL for wavebreak induction and the area of spatially discordant APD alternans. Apamin significantly facilitated the induction of sustained VF (from 3/9 hearts to 9/9 hearts, P=0.009). Short term cardiac memory was assessed by the slope of APD80 versus activation time. The slope increased from 0.01 [CI, −0.09 to 0.12] at baseline to 0.34 [CI, 0.23 to 0.44] after apamin (P<0.001) during RV pacing, and from 0.07 [CI, −0.05 to 0.20] to 0.54 [CI, 0.06 to 1.03] after apamin infusion (P=0.045) during LV pacing. Patch-clamp studies confirmed increased IKASin isolated rabbit ventricular myocytes during hypokalemia (P=0.038). Conclusions: Hypokalemia activates IKAS to shorten APD and maintain repolarization reserve at late activation sites during ventricular pacing. IKAS blockade prominently lengthens the APD at late activation sites and facilitates VF induction

    Role of Apamin-Sensitive Calcium-Activated Small-Conductance Potassium Currents on the Mechanisms of Ventricular Fibrillation in Pacing-Induced Failing Rabbit Hearts

    Get PDF
    BACKGROUND: Ventricular fibrillation (VF) during heart failure is characterized by stable reentrant spiral waves (rotors). Apamin-sensitive small-conductance calcium-activated potassium currents (IKAS) are heterogeneously upregulated in failing hearts. We hypothesized that IKAS influences the location and stability of rotors during VF. METHODS AND RESULTS: Optical mapping was performed on 9 rabbit hearts with pacing-induced heart failure. The epicardial right ventricular and left ventricular surfaces were simultaneously mapped in a Langendorff preparation. At baseline and after apamin (100 nmol/L) infusion, the action potential duration (APD80) was determined, and VF was induced. Areas with a >50% increase in the maximum action potential duration (ΔAPD) after apamin infusion were considered to have a high IKAS distribution. At baseline, the distribution density of phase singularities during VF in high IKAS distribution areas was higher than in other areas (0.0035±0.0011 versus 0.0014±0.0010 phase singularities/pixel; P=0.004). In addition, high dominant frequencies also colocalized to high IKAS distribution areas (26.0 versus 17.9 Hz; P=0.003). These correlations were eliminated during VF after apamin infusion, as the number of phase singularities (17.2 versus 11.0; P=0.009) and dominant frequencies (22.1 versus 16.2 Hz; P=0.022) were all significantly decreased. In addition, reentrant spiral waves became unstable after apamin infusion, and the duration of VF decreased. CONCLUSIONS: The IKAS current influences the mechanism of VF in failing hearts as phase singularities, high dominant frequencies, and reentrant spiral waves all correlated to areas of high IKAS. Apamin eliminated this relationship and reduced VF vulnerability

    Financialisation of News in China in the Age of the Internet: The Case of Xinhuanet

    Get PDF
    This paper discusses the recent development of Xinhuanet.com, a news website launched by Xinhua News Agency, one of China’s key central state-owned news organisations. Xinhuanet Co. Ltd., the business entity running the website, went public in October 2016 in Shanghai. This has marked the first step in the state news agency’s financialisation. Two main questions are addressed. First, what were the main driving forces behind Xinhuanet’s transformation from a governmental cultural organisation to a publicly traded enterprise, the majority shareholder of which remains Xinhua? Second, how to understand the nature of this transformation in relation to Xinhua’s wider marketisation process and that of the Chinese media sector as a whole? The paper argues that Xinhua’s financialisation via Xinhuanet is best understood as part of a state-administrated initiative in accord with Xinhua’s own business ambitions. The financialisation of news by state players such as Xinhuanet does not alter the underlying ownership structure of Chinese news media, which remain ultimately state-controlled

    Effects of cyclooxygenase-1 and -2 gene disruption on Helicobacter pylori-induced gastric inflammation

    Get PDF
    Background. Cyclooxygenases (COXs) play important roles in inflammation and carcinogenesis. The present study aimed to determine the effects of COX-1 and COX-2 gene disruption on Helicobacter pylori-induced gastric inflammation. Methods. Wild-type (WT), COX-1 and COX-2 heterozygous (COX-1 +/- and COX-2 +/-), and homozygous COX-deficient (COX-1 -/- and COX-2 -/-) mice were inoculated with H. pylori strain TN2 and killed after 24 weeks of infection. Uninfected WT and COX-deficient mice were used as controls. Levels of gastric mucosal inflammation, epithelial cell proliferation and apoptosis, and cytokine expression were determined. Results. COX deficiency facilitated H. pylori-induced gastritis. In the presence of H. pylori infection, apoptosis was increased in both WT and COX-deficient mice, whereas cell proliferation was increased in WT and COX-1-deficient, but not in COX-2-deficient, mice. Tumor necrosis factor (TNF)-α and interleukin-10 mRNA expression was elevated in H. pylori-infected mice, but only TNF-α mRNA expression was further increased by COX deficiency. Prostaglandin E 2 levels were increased in infected WT and COX-2-deficient mice but were at very low levels in infected COX-1-deficient mice. Leukotriene (LT) B 4 and LTC 4 levels were increased to a similar extent in infected WT and COX-deficient mice. Conclusions. COX deficiency enhances H. pylori-induced gastritis, probably via TNF-α expression. COX-2, but not COX-1, deficiency suppresses H. pylori-induced cell proliferation. © 2006 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs

    Get PDF
    BACKGROUND: The effects of intermittent open-loop vagal nerve stimulation (VNS) on the ventricular rate (VR) during atrial fibrillation (AF) remain unclear. OBJECTIVE: The purpose of this study was to test the hypothesis that VNS damages the stellate ganglion (SG) and improves VR control during persistent AF. METHODS: We performed left cervical VNS in ambulatory dogs while recording the left SG nerve activity (SGNA) and vagal nerve activity. Tyrosine hydroxylase (TH) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to assess neuronal cell death in the SG. RESULTS: We induced persistent AF by atrial pacing in 6 dogs, followed by intermittent VNS with short ON-time (14 seconds) and long OFF-time (66 seconds). The integrated SGNA and VR during AF were 4.84 mV·s (95% confidence interval [CI] 3.08-6.60 mV·s) and 142 beats/min (95% CI 116-168 beats/min), respectively. During AF, VNS reduced the integrated SGNA and VR, respectively, to 3.74 mV·s (95% CI 2.27-5.20 mV·s; P = .021) and 115 beats/min (95% CI 96-134 beats/min; P = .016) during 66-second OFF-time and to 4.07 mV·s (95% CI 2.42-5.72 mV·s; P = .037) and 114 beats/min (95% CI 83-146 beats/min; P = .039) during 3-minute OFF-time. VNS increased the frequencies of prolonged (>3 seconds) pauses during AF. TH staining showed large confluent areas of damage in the left SG, characterized by pyknotic nuclei, reduced TH staining, increased percentage of TH-negative ganglion cells, and positive TUNEL staining. Occasional TUNEL-positive ganglion cells were also observed in the right SG. CONCLUSION: VNS damaged the SG, leading to reduced SGNA and better rate control during persistent AF
    corecore