1,704 research outputs found

    Probing onset of strong localization and electron-electron interactions with the presence of direct insulator-quantum Hall transition

    Full text link
    We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator-quantum Hall transition with increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron-electron interaction effects to the observed transition in our study.Comment: 9 pages, 4 figure

    KCNN2 polymorphisms and cardiac tachyarrhythmias

    Get PDF
    Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD

    Combining ketamine with astrocytic inhibitor as a potential analgesic strategy for neuropathic pain. ketamine, astrocytic inhibitor and pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropathic pain is an intractable clinical problem. Intrathecal ketamine, a noncompetitive N--methyl-D-aspartate receptor (NMDAR) antagonist, is reported to be useful for treating neuropathic pain in clinic by inhibiting the activity of spinal neurons. Nevertheless, emerging studies have disclosed that spinal astrocytes played a critical role in the initiation and maintenance of neuropathic pain. However, the present clinical therapeutics is still just concerning about neuronal participation. Therefore, the present study is to validate the coadministration effects of a neuronal noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and astrocytic cytotoxin L-α-aminoadipate (LAA) on spinal nerve ligation (SNL)-induced neuropathic pain.</p> <p>Results</p> <p>Intrathecal ketamine (10, 100, 1000 μg/kg) or LAA (10, 50, 100 nmol) alleviated SNL-induced mechanical allodynia in a dose-dependent manner respectively. Phosphorylated NR1 (pNR1) or glial fibrillary acidic protein (GFAP) expression was down-regulated by intrathecal ketamine (100, 1000 μg/kg) or LAA (50, 100 nmol) respectively. The combination of ketamine (100 μg/kg) with LAA (50 nmol) showed superadditive effects on neuropathic pain compared with that of intrathecal administration of either ketamine or LAA alone. Combined administration obviously relieved mechanical allodynia in a quick and stable manner. Moreover, down-regulation of pNR1 and GFAP expression were also enhanced by drugs coadministration.</p> <p>Conclusions</p> <p>These results suggest that combining NMDAR antagonist ketamine with an astrocytic inhibitor or cytotoxin, which is suitable for clinical use once synthesized, might be a potential strategy for clinical management of neuropathic pain.</p

    Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study on expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocarcinoma (GC).</p> <p>Methods</p> <p>Expressions of CD133 protein by immunostaining (99 cases) and CD133 mRNA by semi-quantitative RT-PCR (31 cases) were detected in primary lesion and in noncancerous gastric mucosa tissue (NCGT). Correlations of CD133 protein expression with clinicopathological parameters and post-operative survival were analyzed. Relations of CD133 mRNA level with Ki-67 labeling index (LI), and lymphatic metastasis were assessed too.</p> <p>Results</p> <p>Brown particles indicating CD133 protein positivity occurred in some parts of tumor cells and epithelium. Expressive percentage of CD133 protein positivity was significantly higher in subgroups with >5 cm diameter (<it>P </it>= 0.041), later TNM stage (<it>P </it>= 0.044), severer lymph node metastasis (<it>P </it>= 0.017), occurrences of lymphatic invasion (<it>P </it>= 0.000) and vascular invasion (<it>P </it>= 0.000) respectively. Severer invasion depth (<it>P </it>= 0.011), lymph node metastasis occurrence (<it>P </it>= 0.043) and later TNM stage (<it>P </it>= 0.049) were the independent risk factors for CD133 protein expression. Average brightness scale value (BSV) of CD133 mRNA was significantly higher in subgroups with >5 cm diameter (<it>P </it>= 0.041), lymph node metastasis occurrence (<it>P </it>= 0.004) and in lower Ki-67 LI (<it>P </it>= 0.02). Relative analysis revealed that BSV of CD133 mRNA related positively to metastatic lymphatic nodes ratio (<it>P </it>= 0.008) and metastatic lymph node number (<it>P </it>= 0.009), but negatively to Ki-67 LI (<it>P </it>= 0.009). Survival of positive subgroup of CD 133 protein was significantly poorer (<it>P </it>= 0.047). Lymph node metastasis occurrence (<it>P </it>= 0.042), later TNM stage (<it>P </it>= 0.046) and CD 133 protein positive expression (<it>P </it>= 0.046) were respectively the independent risk factors to survival.</p> <p>Conclusion</p> <p>Higher expressive level of CD133 mRNA is associated to lower Ki-67 LI and severer lymphatic metastasis. Therefore, the expressive level of CD133 mRNA can play an appropriate role to reflect the status of lymph node metastasis and proliferation of GC. CD133 protein expression is closely related with larger tumor, later TNM stage, lymphtic metastasis and survival of GC.</p

    Abnormal Mammary Gland Development and Growth Retardation in Female Mice and MCF7 Breast Cancer Cells Lacking Androgen Receptor

    Get PDF
    Phenotype analysis of female mice lacking androgen receptor (AR) deficient (AR−/−) indicates that the development of mammary glands is retarded with reduced ductal branching in the prepubertal stages, and fewer Cap cells in the terminal end buds, as well as decreased lobuloalveolar development in adult females, and fewer milk-producing alveoli in the lactating glands. The defective development of AR−/− mammary glands involves the defects of insulin-like growth factor I–insulin-like growth factor I receptor and mitogen-activated protein kinase (MAPK) signals as well as estrogen receptor (ER) activity. Similar growth retardation and defects in growth factor–mediated Ras/Raf/MAPK cascade and ER signaling are also found in AR−/− MCF7 breast cancer cells. The restoration assays show that AR NH2-terminal/DNA-binding domain, but not the ligand-binding domain, is essential for normal MAPK function in MCF7 cells, and an AR mutant (R608K), found in male breast cancer, is associated with the excessive activation of MAPK. Together, our data provide the first in vivo evidence showing that AR-mediated MAPK and ER activation may play important roles for mammary gland development and MCF7 breast cancer cell proliferation

    MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features

    Get PDF
    Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA–miRNA synergistic network from a new view. Here, we constructed a miRNA–miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets
    corecore