1,497 research outputs found

    Efficient Codes for Limited View Adversarial Channels

    Full text link
    We introduce randomized Limited View (LV) adversary codes that provide protection against an adversary that uses their partial view of the communication to construct an adversarial error vector to be added to the channel. For a codeword of length N, the adversary selects a subset of \rho_rN of the codeword components to "see", and then "adds" an adversarial error vector of weight \rho_wN to the codeword. Performance of the code is measured by the probability of the decoder failure in recovering the sent message. An (N, q^{RN},\delta)-limited view adversary code ensures that the success chance of the adversary in making decoder fail, is bounded by \delta when the information rate of the code is at least R. Our main motivation to study these codes is providing protection for wireless communication at the physical layer of networks. We formalize the definition of adversarial error and decoder failure, construct a code with efficient encoding and decoding that allows the adversary to, depending on the code rate, read up to half of the sent codeword and add error on the same coordinates. The code is non-linear, has an efficient decoding algorithm, and is constructed using a message authentication code (MAC) and a Folded Reed-Solomon (FRS) code. The decoding algorithm uses an innovative approach that combines the list decoding algorithm of the FRS codes and the MAC verification algorithm to eliminate the exponential size of the list output from the decoding algorithm. We discuss application of our results to Reliable Message Transmission problem, and open problems for future work

    Adversarial Wiretap Channel with Public Discussion

    Full text link
    Wyner's elegant model of wiretap channel exploits noise in the communication channel to provide perfect secrecy against a computationally unlimited eavesdropper without requiring a shared key. We consider an adversarial model of wiretap channel proposed in [18,19] where the adversary is active: it selects a fraction ρr\rho_r of the transmitted codeword to eavesdrop and a fraction ρw\rho_w of the codeword to corrupt by "adding" adversarial error. It was shown that this model also captures network adversaries in the setting of 1-round Secure Message Transmission [8]. It was proved that secure communication (1-round) is possible if and only if ρr+ρw<1\rho_r + \rho_w <1. In this paper we show that by allowing communicants to have access to a public discussion channel (authentic communication without secrecy) secure communication becomes possible even if ρr+ρw>1\rho_r + \rho_w >1. We formalize the model of \awtppd protocol and for two efficiency measures, {\em information rate } and {\em message round complexity} derive tight bounds. We also construct a rate optimal protocol family with minimum number of message rounds. We show application of these results to Secure Message Transmission with Public Discussion (SMT-PD), and in particular show a new lower bound on transmission rate of these protocols together with a new construction of an optimal SMT-PD protocol

    Decelerating Airy pulse propagation in highly non-instantaneous cubic media

    Get PDF
    The propagation of decelerating Airy pulses in non-instantaneous cubic medium is investigated both theoretically and numerically. In a Debye model, at variance with the case of accelerating Airy and Gaussian pulses, a decelerating Airy pulse evolves into a single soliton for weak and general non- instantaneous response. Airy pulses can hence be used to control soliton generation by temporal shaping. The effect is critically dependent on the response time, and could be used as a way to measure the Debye type response function. For highly non- instantaneous response, we theoretically find a decelerating Airy pulse is still transformed into Airy wave packet with deceleration. The theoretical predictions are confirmed by numerical simulations

    Selective gas detection using Mn3O4/WO3 composites as a sensing layer

    Get PDF
    Pure WO3 sensors and Mn3O4/WO3 composite sensors with different Mn concentrations (1 atom %, 3 atom % and 5 atom %) were successfully prepared through a facile hydrothermal method. As gas sensing materials, their sensing performance at different temperatures was systematically investigated for gas detection. The devices displayed different sensing responses toward different gases at specific temperatures. The gas sensing performance of Mn3O4/WO3 composites (especially at 3 atom % Mn) were far improved compared to sensors based on pure WO3, where the improvement is related to the heterojunction formed between the two metal oxides. The sensor based on the Mn3O4/WO3 composite with 3 atom % Mn showed a high selective response to hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) at working temperatures of 90 degrees C, 150 degrees C and 210 degrees C, respectively. The demonstrated superior selectivity opens the door for potential applications in gas recognition and detection

    The Electronics and Data Acquisition System for the PandaX-I Dark Matter Experiment

    Full text link
    We describe the electronics and data acquisition system used in the first phase of the PandaX experiment -- a 120 kg dual-phase liquid xenon dark matter direct detection experiment in the China Jin-Ping Underground Laboratory. This system utilized 180 channels of commercial flash ADC waveform digitizers. This system achieved low trigger threshold (<<1 keV electron-equivalent energy) and low deadtime data acquistion during the entire experimental run.Comment: 12 pages, 6 figures, version as accepted by JINS

    Development of Braking Force Distribution Strategy for Dual-Motor-Drive Electric Vehicle

    Get PDF
    In the development of the optimal braking force distribution strategy for a dual-motor-drive electric vehicle (DMDEV) with a series cooperative braking system, three key factors were taken into consideration, i.e. the regenerative force distribution coefficient between the front and the rear motor (β), the energy recovery coefficient at the wheels (α3), and the front-and-rear-axle braking force distribution coefficient (λ). First, the overall power loss model of the two surface-mounted permanent magnetic synchronous motors (SMPMSMs) was created based on the d-q axis equivalent circuit model. The optimal relationship of β and the overall efficiency of the dual-motor system were confirmed, where the latter was quite different from that obtained from the traditional look-up table method for the motors\u27 efficiency. Then, four dimensionless evaluation coefficients were used to evaluate braking stability, regenerative energy transfer efficiency, and energy recovery at the wheels. Finally, based on several typical braking operations, the comprehensive effects of the four coefficients on braking stability and energy recovery were revealed. An optimal braking force distribution strategy balancing braking stability and energy recovery is suggested for a DMDEV with a series cooperative braking system

    Update of the trigger system of the PandaX-II experiment

    Full text link
    PandaX-II experiment is a dark matter direct detection experiment using about half-ton of liquid xenon as the sensitive target. The electrical pulses detected by photomultiplier tubes from scintillation photons of xenon are recorded by waveform digitizers. The data acquisition of Pandax-II relies on a trigger system that generates common trigger signals for all waveform digitizers. Previously an analog device-based trigger system was used for the data acquisition system. In this paper we present a new FPGA-based trigger system. The design of this system and trigger algorithms are described. The performance of this system on real data is presented
    corecore