35 research outputs found
Two-axis-twisting spin squeezing by multi-pass quantum erasure
Many-body entangled states are key elements in quantum information science
and quantum metrology. One important problem in establishing a high degree of
many-body entanglement using optical techniques is the leakage of the system
information via the light that creates such entanglement. We propose an
all-optical interference-based approach to erase this information. Unwanted
atom-light entanglement can be removed by destructive interference of three or
more successive atom-light interactions, with only the desired effective
atom-atom interaction left. This quantum erasure protocol allows implementation
of Heisenberg-limited spin squeezing using coherent light and a cold or warm
atomic ensemble. Calculations show that significant improvement in the
squeezing exceeding 10 dB is obtained compared to previous methods, and
substantial spin squeezing is attainable even under moderate experimental
conditions. Our method enables the efficient creation of many-body entangled
states with simple setups, and thus is promising for advancing technologies in
quantum metrology and quantum information processing.Comment: 10 pages, 4 figures. We have improved the presentation and added a
new section, in which we have generalized the scheme from a three-pass scheme
to multi-pass schem
Coherence assisted resonance with sub-lifetime-limited linewidth
We demonstrate a novel approach to obtain resonance linewidth below that
limited by coherence lifetime. Cross correlation between induced intensity
modulation of two lasers coupling the target resonance exhibits a narrow
spectrum. 1/30 of the lifetime-limited width was achieved in a
proof-of-principle experiment where two ground states are the target resonance
levels. Attainable linewidth is only limited by laser shot noise in principle.
Experimental results agree with an intuitive analytical model and numerical
calculations qualitatively. This technique can be easily implemented and should
be applicable to many atomic, molecular and solid state spin systems for
spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure
Charge Measurement of Cosmic Ray Nuclei with the Plastic Scintillator Detector of DAMPE
One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to
measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin
and propagation remains a hot topic in astrophysics. The Plastic Scintillator
Detector (PSD) on top of DAMPE is designed to measure the charges of cosmic ray
nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays
from charged particles. We propose in this paper a charge reconstruction
procedure to optimize the PSD performance in charge measurement. Essentials of
our approach, including track finding, alignment of PSD, light attenuation
correction, quenching and equalization correction are described detailedly in
this paper after a brief description of the structure and operational principle
of the PSD. Our results show that the PSD works very well and almost all the
elements in cosmic rays from H to Fe are clearly identified in the charge
spectrum.Comment: 20 pages, 4 figure
Removal of tar from coke oven flue gas by emulsion liquid membrane
Abstract
The new method for removal tar from coke oven flue gas by emulsion liquid membrane was developed. The W/O emulsion was prepared by using kerosene as organic solvent, L-113B as surfactant, water as internal phase and external phase, respectively. The optimum operating conditions were obtained: The optimum experimental conditions of the ELM process for initial tar concentration of 62.5 mg/L are: absorption time: 40 min; concentration of L-113B: 4% (v/v); emulsification speed: 4000 r/min; volume ratio of emulsion to external water phase: 1:4; gas flow rate: 100 mL/min; stirring speed: 630 r/min; volume ratio of oil phase to internal phase: 1:1. The efficiency of tar removal was about 98 % at optimal operating conditions.</jats:p
