35 research outputs found

    Two-axis-twisting spin squeezing by multi-pass quantum erasure

    Get PDF
    Many-body entangled states are key elements in quantum information science and quantum metrology. One important problem in establishing a high degree of many-body entanglement using optical techniques is the leakage of the system information via the light that creates such entanglement. We propose an all-optical interference-based approach to erase this information. Unwanted atom-light entanglement can be removed by destructive interference of three or more successive atom-light interactions, with only the desired effective atom-atom interaction left. This quantum erasure protocol allows implementation of Heisenberg-limited spin squeezing using coherent light and a cold or warm atomic ensemble. Calculations show that significant improvement in the squeezing exceeding 10 dB is obtained compared to previous methods, and substantial spin squeezing is attainable even under moderate experimental conditions. Our method enables the efficient creation of many-body entangled states with simple setups, and thus is promising for advancing technologies in quantum metrology and quantum information processing.Comment: 10 pages, 4 figures. We have improved the presentation and added a new section, in which we have generalized the scheme from a three-pass scheme to multi-pass schem

    Coherence assisted resonance with sub-lifetime-limited linewidth

    Get PDF
    We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure

    Charge Measurement of Cosmic Ray Nuclei with the Plastic Scintillator Detector of DAMPE

    Full text link
    One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin and propagation remains a hot topic in astrophysics. The Plastic Scintillator Detector (PSD) on top of DAMPE is designed to measure the charges of cosmic ray nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays from charged particles. We propose in this paper a charge reconstruction procedure to optimize the PSD performance in charge measurement. Essentials of our approach, including track finding, alignment of PSD, light attenuation correction, quenching and equalization correction are described detailedly in this paper after a brief description of the structure and operational principle of the PSD. Our results show that the PSD works very well and almost all the elements in cosmic rays from H to Fe are clearly identified in the charge spectrum.Comment: 20 pages, 4 figure

    Removal of tar from coke oven flue gas by emulsion liquid membrane

    No full text
    Abstract The new method for removal tar from coke oven flue gas by emulsion liquid membrane was developed. The W/O emulsion was prepared by using kerosene as organic solvent, L-113B as surfactant, water as internal phase and external phase, respectively. The optimum operating conditions were obtained: The optimum experimental conditions of the ELM process for initial tar concentration of 62.5 mg/L are: absorption time: 40 min; concentration of L-113B: 4% (v/v); emulsification speed: 4000 r/min; volume ratio of emulsion to external water phase: 1:4; gas flow rate: 100 mL/min; stirring speed: 630 r/min; volume ratio of oil phase to internal phase: 1:1. The efficiency of tar removal was about 98 % at optimal operating conditions.</jats:p

    Resolving multiple peaks using a sub-transit-linewidth cross-correlation resonance

    Full text link
    corecore