201 research outputs found
Highest weight modules over quantum queer Lie superalgebra U_q(q(n))
In this paper, we investigate the structure of highest weight modules over
the quantum queer superalgebra . The key ingredients are the
triangular decomposition of and the classification of finite
dimensional irreducible modules over quantum Clifford superalgebras. The main
results we prove are the classical limit theorem and the complete reducibility
theorem for -modules in the category .Comment: Definition 1.5 and Definition 6.1 are changed, and a remark is added
in the new versio
A categorification of the boson-fermion correspondence via representation theory of sl(∞)
Bott - Borel - Weil Construction For Quantum Supergroup Uq(gl(m|n))
The finite dimensional irreducible representations of the quantum supergroup
are constructed geometrically using techniques from the Bott -
Borel - Weil theory and vector coherent states.Comment: Latex, 22 page
The return of the bursts: Thermonuclear flashes from Circinus X-1
We report the detection of 15 X-ray bursts with RXTE and Swift observations
of the peculiar X-ray binary Circinus X-1 during its May 2010 X-ray
re-brightening. These are the first X-ray bursts observed from the source after
the initial discovery by Tennant and collaborators, twenty-five years ago. By
studying their spectral evolution, we firmly identify nine of the bursts as
type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the
bursts that confirms once and for all the identification of Cir X-1 as a type I
X-ray burst source, and therefore as a low magnetic field accreting neutron
star. The first five bursts observed by RXTE are weak and show approximately
symmetric light curves, without detectable signs of cooling along the burst
decay. We discuss their possible nature. Finally, we explore a scenario to
explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it
was extensively observed and accreting at a similar rate.Comment: Accepted for publication in The Astrophysical Journal Letters. Tables
1 & 2 merged. Minor changes after referee's comments. 5 pages, 4 Figure
Realizations of the Lie superalgebra q(2) and applications
The Lie superalgebra q(2) and its class of irreducible representations V_p of
dimension 2p (p being a positive integer) are considered. The action of the
q(2) generators on a basis of V_p is given explicitly, and from here two
realizations of q(2) are determined. The q(2) generators are realized as
differential operators in one variable x, and the basis vectors of V_p as
2-arrays of polynomials in x. Following such realizations, it is observed that
the Hamiltonian of certain physical models can be written in terms of the q(2)
generators. In particular, the models given here as an example are the
sphaleron model, the Moszkowski model and the Jaynes-Cummings model. For each
of these, it is shown how the q(2) realization of the Hamiltonian is helpful in
determining the spectrum.Comment: LaTeX file, 15 pages. (further references added, minor changes in
section 5
Homological algebra for osp(1/2n)
We discuss several topics of homological algebra for the Lie superalgebra
osp(1|2n). First we focus on Bott-Kostant cohomology, which yields classical
results although the cohomology is not given by the kernel of the Kostant
quabla operator. Based on this cohomology we can derive strong
Bernstein-Gelfand-Gelfand resolutions for finite dimensional osp(1|2n)-modules.
Then we state the Bott-Borel-Weil theorem which follows immediately from the
Bott-Kostant cohomology by using the Peter-Weyl theorem for osp(1|2n). Finally
we calculate the projective dimension of irreducible and Verma modules in the
category O
Tensor representations of Mackey Lie algebras and their dense subalgebras
In this article we review the main results of the earlier papers [PStyr, PS] and [DPS], and establish related new results in considerably greater generality. We introduce a class of infinite-dimensional Lie algebras gM, which we call Mackey Lie algebras, and define monoidal categories TgM of tensor gM-modules. We also consider dense subalgebras a⊂gM and corresponding categories Ta. The locally finite Lie algebras sl(V,W),o(V),sp(V) are dense subalgebras of respective Mackey Lie algebras. Our main result is that if gM is a Mackey Lie algebra and a⊂gM is a dense subalgebra, then the monoidal category Ta is equivalent to Tsl(∞) or To(∞); the latter monoidal categories have been studied in detail in [DPS]. A possible choice of a is the well-known Lie algebra of generalized Jacobi matrices
- …
