1,900 research outputs found
AC field effect flow control of EOF in complex microfluidic systems with integrated electrodes
In this work, we demonstrate that positive net flow can be induced and controlled with relatively low potential due to the parallel alignment of the integrated channel electrodes. Therefore, we present a novel method to exquisitely control Electro Osmotic Flow (EOF) by using integrated electrodes fabricated beneath a meandering channel geometry (Figure 1). Equation 1 describes EOF velocity for AC-driven flow, where εo and εr respectively are the permittivity of vacuum and that of water, ζ the zeta potential at the solid liquid interface, η the viscosity, Ex the electric field
Impact Ionization in ZnS
The impact ionization rate and its orientation dependence in k space is
calculated for ZnS. The numerical results indicate a strong correlation to the
band structure. The use of a q-dependent screening function for the Coulomb
interaction between conduction and valence electrons is found to be essential.
A simple fit formula is presented for easy calculation of the energy dependent
transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for
publication in PRB as brief Report (LaTeX source replaces raw-postscript
file
Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels
Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this paper, we show that this surface charge is typically dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. Taking the hydronium ions into account, we model the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall and of the electrolyte bulk, parametrized by the dissociation reaction constants. Experimental data with aqueous KCl solutions in 165-nm-high silica nanochannels are described well by our model, both with and without extra hydronium from added HCl
High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways
Introduction: Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. Methods: This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Results: Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1-phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. Conclusions: These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.'973' National ST Major Project [2011CB503900]; National Natural Science Foundation of China [81270321, 81170101, 81370235]; Natural Science Foundation of Beijing, China [7122106]SCI(E)[email protected]; [email protected]
Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis
Objective Patients with systemic lupus erythematosus (SLE) have a notable increase in atherothrombotic cardiovascular disease (CVD) which is not explained by the Framingham risk equation. In vitro studies indicate that type I interferons (IFNs) may play prominent roles in increased CV risk in SLE. However, the in vivo relevance of these findings, with regard to the development of CVD, has not been characterized. This study was undertaken to examine the role of type I IFNs in endothelial dysfunction, aberrant vascular repair, and atherothrombosis in murine models of lupus and atherosclerosis. Methods Lupus‐prone New Zealand mixed 2328 (NZM) mice and atherosclerosis‐prone apolipoprotein E– knockout (apoE −/− ) mice were compared to mice lacking type I IFN receptor (INZM and apoE −/− IFNAR −/− mice, respectively) with regard to endothelial vasodilatory function, endothelial progenitor cell (EPC) function, in vivo neoangiogenesis, plaque development, and occlusive thrombosis. Similar experiments were performed using NZM and apoE −/− mice exposed to an IFNα‐containing or empty adenovirus. Results Loss of type I IFN receptor signaling improved endothelium‐dependent vasorelaxation, lipoprotein parameters, EPC numbers and function, and neoangiogenesis in lupus‐prone mice, independent of disease activity or sex. Further, acute exposure to IFNα impaired endothelial vasorelaxation and EPC function in lupus‐prone and non–lupus‐prone mice. Decreased atherosclerosis severity and arterial inflammatory infiltrates and increased neoangiogenesis were observed in apoE −/− IFNAR −/− mice, compared to apoE −/− mice, while NZM and apoE −/− mice exposed to IFNα developed accelerated thrombosis and platelet activation. Conclusion These results support the hypothesis that type I IFNs play key roles in the development of premature CVD in SLE and, potentially, in the general population, through pleiotropic deleterious effects on the vasculature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93543/1/34504_ftp.pd
Uremic solutes and risk of end stage renal disease in type 2 diabetes
Here we studied plasma metabolomic profiles as determinants of progression to ESRD in patients with Type 2 diabetes (T2D). This nested case-control study evaluated 40 cases who progressed to ESRD during 8-12 years of follow-up and 40 controls who remained alive without ESRD from the Joslin Kidney Study cohort. Controls were matched with cases for baseline clinical characteristics; although controls had slightly higher eGFR and lower levels of urinary albumin excretion than T2D cases. Plasma metabolites at baseline were measured by mass spectrometry-based global metabolomic profiling. Of the named metabolites in the library, 262 were detected in at least 80% of the study patients. The metabolomic platform recognized 78 metabolites previously reported to be elevated in ESRD (uremic solutes). Sixteen were already elevated in the baseline plasma of our cases years before ESRD developed. Other uremic solutes were either not different or not commonly detectable. Essential amino acids and their derivatives were significantly depleted in the cases, whereas certain amino acid-derived acylcarnitines were increased. All findings remained statistically significant after adjustment for differences between study groups in albumin excretion rate, eGFR or HbA1c. Uremic solute differences were confirmed by quantitative measurements. Thus, abnormal plasma concentrations of putative uremic solutes and essential amino acids either contribute to progression to ESRD or are a manifestation of an early stage(s) of the disease process that leads to ESRD in T2D
Mechanisms for Oxidative Stress in Diabetic Cardiovascular Disease
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63116/1/ars.2007.1595.lowlink.pdf_v03.pd
Analysis of finger motion coordination during packaging interactions
Packaging accessibility is a significant problem for many older people. Whilst the majority of studies have focused on issues surrounding strength, work has shown that dexterity required to open a pack is also a major issue for many older people.
Hence, the work undertaken here, reports a quantitative study that aimed to analyse motion coordination patterns across digits 2–5 (index to little finger) during interactions with three of the most common types of packaging: plastic bottles, jars, and crisps packets, and comparing those interactions to a common measure of dexterity, the Perdue Pegboard. Ten subjects (6 males and 4 females) were examined while reaching
forward to grasp and open a 300ml plastic bottle and a 500g jar. A ten-camera opto-electronic motion capture system measured trajectories of 25 miniature reflective
markers placed on the dorsal surface landmarks of the hand. Joint angular profiles for 12 involved flexion–extension movements were derived from the measured coordinates of
surface markers.
The results showed that finger correlations vary widely across the differing pack formats with the crisps having the lowest finger movement correlation and the jar having the highest. Speed and jerk metrics were also seen to vary across the various pack formats.
However, finger correlations were seen to be more relevant to perceived dexterity of pack opening than finger speeds and jerk motions
Heuristic evaluations of back support, shoulder support, hand grip strength support, and sit-stand support exoskeletons using universal design principles
Occupational exoskeletons promise to reduce the incidence of musculoskeletal
injuries; however, we do not know if their designs allow universal use by all
workers. We also do not know how easy the tasks of assembling, donning,
doffing, and disassembling exoskeletons are. The purpose of our study was to
heuristically evaluate a back support, a shoulder support, a handgrip strength
support, and a sit-stand exoskeleton for how well they are designed for
universal use when assembling, donning, doffing, and disassembling the
exoskeleton. Seven evaluators used universal design principles and associated
criteria to independently evaluate and rate four exoskeletons when assembling,
donning, doffing, and disassembling the devices. The rating scale was a
Likert-type scale, where a rating of 1 represented not at all, and a rating of
5 represented an excellent design with respect to the universal design criteria
for the task. The results indicate that providing perceptible information to
the user, making the design equitable to use for a diverse set of users, making
the design simple and intuitive to use with adequate feedback, and designing to
prevent user errors, and when errors are made, allowing the user to recover
quickly from the errors, were rated poorly. Assembling and donning tasks
presented the most challenges
Tripeptide analysis of protein structures
BACKGROUND: An efficient building block for protein structure prediction can be tripeptides. 8000 different tripeptides from a dataset of 1220 high resolution (≤ 2.0°A) structures from the Protein Data Bank (PDB) have been looked at, to determine which are structurally rigid and non-rigid. This data has been statistically analyzed, discussed and summarized. The entire data can be utilized for the building of protein structures. RESULTS: Tripeptides have been classified into three categories: rigid, non-rigid and intermediate, based on the relative structural rigidity between C(α )and C(β )atoms in a tripeptide. We found that 18% of the tripeptides in the dataset can be classified as rigid, 4% as non-rigid and 78% as intermediate. Many rigid tripeptides are made of hydrophobic residues, however, there are tripeptides with polar side chains forming rigid structures. The bulk of the tripeptides fall in the intermediate class while very small numbers actually fall in the non-rigid class. Structurally all rigid tripeptides essentially form two structural classes while the intermediate and non-rigid tripeptides fall into one structural class. This notion of rigidity and non-rigidity is designed to capture side chain interactions but not secondary structures. CONCLUSIONS: Rigid tripeptides have no correlation with the secondary structures in proteins and hence this work is complementary to such studies. Tripeptide data may be used to predict plausible structures for oligopeptides and for denovo protein design
- …
