70 research outputs found
Recommended from our members
Pre-conditioning the epigenetic response to high vapor pressure deficit increases the drought tolerance of Arabidopsis thaliana
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments
Transgenerational, dynamic methylation of stomata genes in response to low relative humidity
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.Penny J. Tricker, Carlos M. Rodríguez López, George Gibbings, Paul Hadley and Mike J. Wilkinso
The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program
Transgenerational, Dynamic Methylation of Stomata Genes in Response to Low Relative Humidity
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner
APPF TPA phenotyping dataset: UA (Tricker) - Wheat
Images and data from wheat phenotyping studies performed at the APPF Plant Accelerator (TPA), University of Adelaide, on behalf of UA (Tricker)</p
APPF TPA phenotyping dataset: UA ACPFG (Tricker) - Barley
Images and data from barley phenotyping studies performed at the APPF Plant Accelerator (TPA), University of Adelaide, on behalf of UA ACPFG (Tricker) ending 2014-05-13</p
Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.
The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution
Recommended from our members
Gene-chip technology and its applications
Gene Chips are finding extensive use in animal and plant science. Generally microarrays are
of two kind, cDNA or oligonucleotide. cDNA microarrays were developed at Stanford University, whereas
oligonucleotide were developed by Affymetrix. The construction of cDNA or oligonucleotide on a glass
slide helps to compare the gene expression level of treated and control samples by labeling mRNA with
green (Cy3) and red (Cy5) dyes. The hybridized gene chip emit fluorescence whose intensity and colour
can be measured. RNA labeling can be done directly or indirectly. Indirect method involves amino allyle
modified dUTP instead of pre-labelled nucleotide. Hybridization of gene chip generally occurs in a
minimum volume possible and to ensure the hetroduplex formation, a ten fold more DNA is spotted on
slide than in the solutions. A confocal or semi confocal laser technologies coupled with CCD camera are
used for image acquisition. For standardization, house keeping genes are used or cDNA are spotted in
gene chip that are not present in treated or control samples. Moreover, statistical analysis (image
analysis) and cluster analysis softwares have been developed by Stanford University. The gene-chip
technology has many applications like expression analysis, gene expression signatures (molecular
phenotypes) and promoter regulatory element co-expression
Tolerance of combined drought and heat stress is associated with transpiration maintenance and water soluble carbohydrates in wheat grains
AbstractWheat (Triticum aestivum L.) production is increasingly challenged by simultaneous drought and heatwaves. We assessed the effect of both stresses combined on whole plant water use and carbohydrate partitioning in eight bread wheat genotypes that showed contrasting tolerance. Plant water use was monitored throughout growth, and water-soluble carbohydrates (WSC) and starch were measured following a three-day heat treatment during drought. WSC were predominantly allocated to the spike in modern Australian varieties, whereas the stem contained most WSC in older genotypes. Combined drought and heat stress increased WSC partitioning to the spike in older genotypes but not in the modern varieties. Glucose and fructose concentrations in grains measured 12 days after anthesis were associated with final grain weight in the main spike. At the whole plant level, combined drought and heat stress differentially altered daily water use and transpiration response to vapour pressure deficit during grain filling, compared to drought only. Final grain yield was increasingly associated with aboveground biomass and total water use with increasing stress intensity. Ability to maintain transpiration, especially following combined drought and heat stress, appears essential for maintaining wheat productivity.One sentence summaryHigher yield following drought and heat stress in wheats that maintain transpiration and have higher water-soluble carbohydrates content in grains.</jats:sec
- …
