11,106 research outputs found

    Impact of Saturn's rings on mission analysis for MJS 77

    Get PDF
    Mariner Jupiter-Saturn '77 mission objectives for Saturn are considered which affect the trajectory design and in particular the aim point at Saturn. These objectives include the following: (1) earth, sun occulation of Saturn, rings, and satellites; (2) close as possible to surface; (3) close as possible to rings; (4) close encounter with Titan (approximately 20,000 km); (5) close encounter with lapetus; (6) multiple satellite encounters; (7) post-Saturn trajectory to Uranus; and (8) post-Saturn trajectory toward solar apex

    Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala

    Get PDF
    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM(+)) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM(+) CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM

    Dark MaGICC: the effect of Dark Energy on galaxy formation. Cosmology does matter

    Full text link
    We present the Dark MaGICC project, which aims to investigate the effect of Dark Energy (DE) modeling on galaxy formation via hydrodynamical cosmological simulations. Dark MaGICC includes four dynamical Dark Energy scenarios with time varying equations of state, one with a self-interacting Ratra-Peebles model. In each scenario we simulate three galaxies with high resolution using smoothed particle hydrodynamics (SPH). The baryonic physics model is the same used in the Making Galaxies in a Cosmological Context (MaGICC) project, and we varied only the background cosmology. We find that the Dark Energy parameterization has a surprisingly important impact on galaxy evolution and on structural properties of galaxies at z=0, in striking contrast with predictions from pure Nbody simulations. The different background evolutions can (depending on the behavior of the DE equation of state) either enhance or quench star formation with respect to a LCDM model, at a level similar to the variation of the stellar feedback parameterization, with strong effects on the final galaxy rotation curves. While overall stellar feedback is still the driving force in shaping galaxies, we show that the effect of the Dark Energy parameterization plays a larger role than previously thought, especially at lower redshifts. For this reason, the influence of Dark Energy parametrization on galaxy formation must be taken into account, especially in the era of precision cosmology.Comment: 11 pages, 13 figure

    NIHAO IV: Core creation and destruction in dark matter density profiles across cosmic time

    Full text link
    We use the NIHAO simulations to investigate the effects of baryonic physics on the time evolution of Dark Matter central density profiles. The sample is made of 70\approx 70 independent high resolution hydrodynamical simulations of galaxy formation and covers a wide mass range: 1e10< Mhalo <1e12, i.e., from dwarfs to L* . We confirm previous results on the dependence of the inner dark matter density slope, α\alpha, on the ratio between stellar-to-halo mass. We show that this relation holds approximately at all redshifts (with an intrinsic scatter of ~0.18 in α\alpha). This implies that in practically all haloes the shape of their inner density profile changes quite substantially over cosmic time, as they grow in stellar and total mass. Thus, depending on their final stellar-to-halo mass ratio, haloes can either form and keep a substantial density core (size~1 kpc), or form and then destroy the core and re-contract the halo, going back to a cuspy profile, which is even steeper than CDM predictions for massive galaxies (~1e12 Msun). We show that results from the NIHAO suite are in good agreement with recent observational measurements of α\alpha in dwarf galaxies. Overall our results suggest that the notion of a universal density profile for dark matter haloes is no longer valid in the presence of galaxy formation.Comment: 11 pages, 13 figures. Corrected typo in table 2 (middle row) with respect to the version published in MNRA
    corecore