410 research outputs found
Structure of 8B from elastic and inelastic 7Be+p scattering
Motivation: Detailed experimental knowledge of the level structure of light
weakly bound nuclei is necessary to guide the development of new theoretical
approaches that combine nuclear structure with reaction dynamics.
Purpose: The resonant structure of 8B is studied in this work.
Method: Excitation functions for elastic and inelastic 7Be+p scattering were
measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6
and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions
was performed.
Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported
with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the
Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell
model/resonating-group method (NCSM/RGM) calculations is performed. This work
is a more detailed analysis of the data first published as a Rapid
Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)]
Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by
some models at relatively low energy but never observed experimentally is an
important step toward understanding the structure of 8B. Their identification
was aided by having both elastic and inelastic scattering data. Direct
comparison of the cross sections and phase shifts predicted by the TDCSM and ab
initio No Core Shell Model coupled with the resonating group method is of
particular interest and provides a good test for these theoretical approaches.Comment: 15 pages, 19 figures, 3 tables, submitted to PR
Low-lying states in 8B
Excitation functions of elastic and inelastic 7Be+p scattering were measured
in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of
the excitation functions provides strong evidence for new positive parity
states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed
and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time
Dependent Continuum Shell Model were used in the analysis of the excitation
functions. The new results are compared to the calculations of contemporary
theoretical models.Comment: 6 pages, 5 figures, accepted as Rapid Communication in Phys. Rev.
Chaos in the Takens-Bogdanov bifurcation with O(2) symmetry
The Takens–Bogdanov bifurcation is a codimension two bifurcation that provides a key to the presence of complex dynamics in many systems of physical interest. When the system is translation invariant in one spatial dimension with no left-right preference the imposition of periodic boundary conditions leads to the Takens–Bogdanov bifurcation with O(2) symmetry. This bifurcation, analyzed by G. Dangelmayr and E. Knobloch, Phil. Trans. R. Soc. London A 322, 243 (1987), describes the interaction between steady states and traveling and standing waves in the nonlinear regime and predicts the presence of modulated traveling waves as well. The analysis reveals the presence of several global bifurcations near which the averaging method (used in the original analysis) fails. We show here, using a combination of numerical continuation and the construction of appropriate return maps, that near the global bifurcation that terminates the branch of modulated traveling waves, the normal form for the Takens–Bogdanov bifurcation admits cascades of period-doubling bifurcations as well as chaotic dynamics of Shil’nikov type. Thus chaos is present arbitrarily close to the codimension two point
Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn
NASA's Dawn mission observed a great variety of colored terrains on asteroid
(4) Vesta during its survey with the Framing Camera (FC). Here we present a
detailed study of the orange material on Vesta, which was first observed in
color ratio images obtained by the FC and presents a red spectral slope. The
orange material deposits can be classified into three types, a) diffuse ejecta
deposited by recent medium-size impact craters (such as Oppia), b) lobate
patches with well-defined edges, and c) ejecta rays from fresh-looking impact
craters. The location of the orange diffuse ejecta from Oppia corresponds to
the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997)
from ground-based spectral observations. The distribution of the orange
material in the FC mosaic is concentrated on the equatorial region and almost
exclusively outside the Rheasilvia basin. Our in-depth analysis of the
composition of this material uses complementary observations from FC, the
visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector
(GRaND). Combining the interpretations from the topography, geomorphology,
color and spectral parameters, and elemental abundances, the most probable
analog for the orange material on Vesta is impact melt
Mineralogy of the Mercurian Surface
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury for four years until April 2015, revealing its structure, chemical makeup, and compositional diversity. Data from the mission have confirmed that Mercury is a compositional end-member among the terrestrial planets. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) on board MESSENGER provided the first detailed geochemical analyses of Mercury's surface. These instruments have been used in conjunction with the Neutron Spectrometer and the Mercury Dual Imaging System to classify numerous geological and geochemical features on the surface of Mercury that were previously unknown. Furthermore, the data have revealed several surprising characteristics about Mercury's surface, including elevated S abundances (up to 4 wt%) and low Fe abundances (less than 2.5 wt%). The S and Fe abundances were used to quantify Mercury's highly reduced state, i.e., between 2.6 and 7.3 log10 units below the Iron-Wustite (IW) buffer. This fO2 is lower than any of the other terrestrial planets in the inner Solar System and has important consequences for the thermal and magmatic evolution of Mercury, its surface mineralogy and geochemistry, and the petrogenesis of the planet's magmas. Although MESSENGER has revealed substantial geochemical diversity across the surface of Mercury, until now, there have been only limited efforts to understand the mineralogical and petrological diversity of the planet. Here we present a systematic and comprehensive study of the potential mineralogical and petrological diversity of Mercury
Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity
Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))
Effect of core--mantle and tidal torques on Mercury's spin axis orientation
The rotational evolution of Mercury's mantle and its core under conservative
and dissipative torques is important for understanding the planet's spin state.
Dissipation results from tides and viscous, magnetic and topographic
core--mantle interactions. The dissipative core--mantle torques take the system
to an equilibrium state wherein both spins are fixed in the frame precessing
with the orbit, and in which the mantle and core are differentially rotating.
This equilibrium exhibits a mantle spin axis that is offset from the Cassini
state by larger amounts for weaker core--mantle coupling for all three
dissipative core--mantle coupling mechanisms, and the spin axis of the core is
separated farther from that of the mantle, leading to larger differential
rotation. The relatively strong core--mantle coupling necessary to bring the
mantle spin axis to its observed position close to the Cassini state is not
obtained by any of the three dissipative core--mantle coupling mechanisms. For
a hydrostatic ellipsoidal core--mantle boundary, pressure coupling dominates
the dissipative effects on the mantle and core positions, and dissipation
together with pressure coupling brings the mantle spin solidly to the Cassini
state. The core spin goes to a position displaced from that of the mantle by
about 3.55 arcmin nearly in the plane containing the Cassini state. With the
maximum viscosity considered of if the coupling is
by the circulation through an Ekman boundary layer or for purely viscous coupling, the core spin lags the
precessing Cassini plane by 23 arcsec, whereas the mantle spin lags by only
0.055 arcsec. Larger, non hydrostatic values of the CMB ellipticity also result
in the mantle spin at the Cassini state, but the core spin is moved closer to
the mantle spin.Comment: 35 pages, 7 figure
Carbon on Mercury's Surface - Origin, Distribution, and Concentration
Distinctive low-reflectance material (LRM) was first observed on Mercury in Mariner 10 flyby images. Visible to near-infrared reflectance spectra of LRM are flatter than the average reflectance spectrum of Mercury, which is strongly red sloped (increasing in reflectance with wavelength). From Mariner 10 and early MErcury, Surface, Space, ENvironment, GEochemistry, and Ranging (MESSENGER) flyby observations, it was suggested that a higher content of ilmenite, ulvospinel, carbon, or iron metal could cause both the characteristic dark, flat spectrum of LRM and the globally low reflectance of Mercury. Once MESSENGER entered orbit, low Fe and Ti abundances measured by the X-Ray and Gamma-Ray Spectrometers ruled out ilmenite, and ulvospinel as important surface constituents and implied that LRM was darkened by a different phase, such as carbon or small amounts of micro- or nanophase iron or iron sulfide dispersed in a silicate matrix. Low-altitude thermal neutron measurements of three LRM-rich regions confirmed an enhancement of 1-3 weight-percent carbon over the global abundance, supporting the hypothesis that LRM is darkened by carbon
Dragonfly: Investigating the Surface Composition of Titan
Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments
- …
