24 research outputs found
Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes
BACKGROUND: Involvement of AFP against apoptosis of tumor cell has been implicated in its evasion of immune surveillance. However, the molecular events of immune escape mechanisms are still unknown. The major observations reported here relate to a possible mechanism by which heptoloma Bel 7402 cells escape immune surveillance in vitro. METHODS: Western blotting and a well-characterized cofocal scanning image were performed to analyze the expression of Fas/FasL and caspase-3 in co-cultured Bel 7402 and Jurkat cells. RESULTS: After co-culture with Jurkat cells, up-regulated Fas and reduced FasL expression could be observed. Treatment with AFP could remarkably inhibit the elevated Fas and, whereas, induce the FasL expression in co-cultured Bel 7402 cells. Cells co-culture could induce the expression of caspase-3 in both cells line. The elevated caspase-3 in Bel 7402 cells was abolished following the treatment of AFP. The expression of caspase-3 was elevated in co-cultured Jurkat cells treated with AFP. No detectable change on the expression of survivin was examined in both cells line. Monoclonal antibody against AFP treatment alone did not obviously influence the growth of cells, as well as the expression of Fas/FasL and caspase-3. However, the effect of AFP could be blocked by antibody. CONCLUSIONS: our results provide evidence that AFP could promote the escape of liver cancer cells from immune surveillance through blocking the caspase signal pathway of tumor cells and triggering the Fas/FasL interaction between tumor cells and lymphocytes
Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms
Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux
Prediagnostic concentrations of plasma genistein and prostate cancer risk in 1,605 men with prostate cancer and 1,697 matched control participants in EPIC
Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients
The effect of bevacizumab on serum soluble FAS/FASL and TRAIL and its receptors (DR4 and DR5) in metastatic colorectal cancer
Evaluation of a Recombinant Double Mutant of Staphylococcal Enterotoxin B (SEB-H32Q/K173E) with Enhanced Antitumor Activity Effects and Decreased Pyrexia
Bladder Tissue Pharmacokinetics of Intravesical Mitomycin C and Suramin in Dogs
Suramin, at non-cytotoxic doses, reverses chemoresistance and enhances the activity of mitomycin C (MMC) in mice bearing human bladder xenograft tumors. The present study evaluated the pharmacokinetics of the intravesical suramin and MMC, alone or in combination, in dogs. Animals received either high dose suramin (20 mg/ml), low dose suramin (6 mg/ml), MMC (2 mg/ml), or combination of low dose suramin and MMC, instilled for 2 h. The dosing volume was 20 ml. All groups showed dilution of drug levels over time due to continued urine production. For single agent suramin, the results showed (a) 5% to 10% penetration into bladder tissues, (b) minimal and clinically insignificant systemic absorption (i.e., undetectable at low dose or a peak concentration that was 6,000× lower than urine concentrations), and (c) disproportionally higher drug penetration and concentrations in bladder tissues at the higher dose. Results for single agent MMC are consistent with our earlier observations. The co-administration of MMC did not alter the plasma, urine, or tissue pharmacokinetics of suramin. Adding suramin did not alter plasma or tissue pharmacokinetics of MMC, but lowered the MMC concentrations in urine by about 20%. This may be in part due to accelerated MMC degradation by co-incubation of suramin or due to variations in urine production rate (because animals were allowed for water during treatment). Suramin readily penetrates the urothelium and into deeper bladder tissues, indicating its potential utility in intravesical therapy
