1,426 research outputs found
Finite element methods for integrated aerodynamic heating analysis
This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability
Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations
We introduce a \textit{non-modal} analysis technique that characterizes the
diffusion properties of spectral element methods for linear
convection-diffusion systems. While strictly speaking only valid for linear
problems, the analysis is devised so that it can give critical insights on two
questions: (i) Why do spectral element methods suffer from stability issues in
under-resolved computations of nonlinear problems? And, (ii) why do they
successfully predict under-resolved turbulent flows even without a
subgrid-scale model? The answer to these two questions can in turn provide
crucial guidelines to construct more robust and accurate schemes for complex
under-resolved flows, commonly found in industrial applications. For
illustration purposes, this analysis technique is applied to the hybridized
discontinuous Galerkin methods as representatives of spectral element methods.
The effect of the polynomial order, the upwinding parameter and the P\'eclet
number on the so-called \textit{short-term diffusion} of the scheme are
investigated. From a purely non-modal analysis point of view, polynomial orders
between and with standard upwinding are well suited for under-resolved
turbulence simulations. For lower polynomial orders, diffusion is introduced in
scales that are much larger than the grid resolution. For higher polynomial
orders, as well as for strong under/over-upwinding, robustness issues can be
expected. The non-modal analysis results are then tested against under-resolved
turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While
devised in the linear setting, our non-modal analysis succeeds to predict the
behavior of the scheme in the nonlinear problems considered
Implicit large-eddy simulation of compressible flows using the Interior Embedded Discontinuous Galerkin method
We present a high-order implicit large-eddy simulation (ILES) approach for
simulating transitional turbulent flows. The approach consists of an Interior
Embedded Discontinuous Galerkin (IEDG) method for the discretization of the
compressible Navier-Stokes equations and a parallel preconditioned Newton-GMRES
solver for the resulting nonlinear system of equations. The IEDG method arises
from the marriage of the Embedded Discontinuous Galerkin (EDG) method and the
Hybridizable Discontinuous Galerkin (HDG) method. As such, the IEDG method
inherits the advantages of both the EDG method and the HDG method to make
itself well-suited for turbulence simulations. We propose a minimal residual
Newton algorithm for solving the nonlinear system arising from the IEDG
discretization of the Navier-Stokes equations. The preconditioned GMRES
algorithm is based on a restricted additive Schwarz (RAS) preconditioner in
conjunction with a block incomplete LU factorization at the subdomain level.
The proposed approach is applied to the ILES of transitional turbulent flows
over a NACA 65-(18)10 compressor cascade at Reynolds number 250,000 in both
design and off-design conditions. The high-order ILES results show good
agreement with a subgrid-scale LES model discretized with a second-order finite
volume code while using significantly less degrees of freedom. This work shows
that high-order accuracy is key for predicting transitional turbulent flows
without a SGS model.Comment: 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201
La correcció de l'escrit i el procés de construcció textual: una proposta per a l'avaluació de l'expressió escrita
This article is based on a dynamic conception of the process of writing, in
which teachers’ action takes on its full meaning when it is fully integrated in
the process of composition undertaken by students. It is well known that a key
part of writing strategies is acquired through links to specific text genres, and
therefore learning to write means learning to produce the genres or kinds of
text seen as essential for each stage and educational level. From a methodological
point of view, the correction proposal presented also recognises the importance
of learners’ reflections on their texts, requires them to develop a
self-critical attitude to enable each student to detect the problems found in
the process of textualisation, and promotes dialogue between students and
teachers during the process of textual construction. The collaboration we present
is based on the experience carried out over recent years with secondary,
sixth-form and first-year university students and adults.L'article parteix d'una concepció dinàmica del procés d'escriptura, en què l'actuació
de l'ensenyant pren tot el sentit quan s'integra plenament en el procés
de redacció que duen a terme els estudiants. És ben sabut que una part important
de les estratègies d'escriptura s'adquireixen vinculades a gèneres textuals
concrets i que, per tant, aprendre a escriure significa aprendre a produir els gèneres
o els tipus de textos que es consideren essencials per a cada etapa i per a
cada nivell educatiu. Des del punt de vista metodològic, la proposta de correcció
que es presenta assumeix, a més, la importància de la reflexió dels
aprenents sobre els seus textos, exigeix el desenvolupament d'una actitud autocrítica
que ha de permetre a cada estudiant detectar els problemes que es
troba en el procés de textualització i propicia el diàleg entre els estudiants i el
professorat durant el procés de construcció textual. La col·laboració que presentem
es basa en l'experiència duta a terme durant els darrers anys amb
alumnat d'ESO, però també amb estudiants de batxillerat, dels primers cursos
d'universitat i amb persones adultes
Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations
A high resolution finite element method for the solution of problems involving high speed compressible flows is presented. The method uses the concepts of flux-corrected transport and is presented in a form which is suitable for implementation on completely unstructured triangular or tetrahedral meshes. Transient and steady state examples are solved to illustrate the performance of the algorithm
Computing parametrized solutions for plasmonic nanogap structures
The interaction of electromagnetic waves with metallic nanostructures
generates resonant oscillations of the conduction-band electrons at the metal
surface. These resonances can lead to large enhancements of the incident field
and to the confinement of light to small regions, typically several orders of
magnitude smaller than the incident wavelength. The accurate prediction of
these resonances entails several challenges. Small geometric variations in the
plasmonic structure may lead to large variations in the electromagnetic field
responses. Furthermore, the material parameters that characterize the optical
behavior of metals at the nanoscale need to be determined experimentally and
are consequently subject to measurement errors. It then becomes essential that
any predictive tool for the simulation and design of plasmonic structures
accounts for fabrication tolerances and measurement uncertainties.
In this paper, we develop a reduced order modeling framework that is capable
of real-time accurate electromagnetic responses of plasmonic nanogap structures
for a wide range of geometry and material parameters. The main ingredients of
the proposed method are: (i) the hybridizable discontinuous Galerkin method to
numerically solve the equations governing electromagnetic wave propagation in
dielectric and metallic media, (ii) a reference domain formulation of the
time-harmonic Maxwell's equations to account for geometry variations; and (iii)
proper orthogonal decomposition and empirical interpolation techniques to
construct an efficient reduced model. To demonstrate effectiveness of the
models developed, we analyze geometry sensitivities and explore optimal designs
of a 3D periodic annular nanogap structure.Comment: 28 pages, 9 figures, 4 tables, 2 appendice
- …
