3,457 research outputs found
Statistical properties of high performance cesium standards
The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards
Home range and habitat use by Kemp's Ridley turtles in West-Central Florida
The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on
the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley
turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to
1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging
ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a
significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used
live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar
studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences
in habitat use. which can then be used to conserve important foraging areas
From Heisenberg matrix mechanics to EBK quantization: theory and first applications
Despite the seminal connection between classical multiply-periodic motion and
Heisenberg matrix mechanics and the massive amount of work done on the
associated problem of semiclassical (EBK) quantization of bound states, we show
that there are, nevertheless, a number of previously unexploited aspects of
this relationship that bear on the quantum-classical correspondence. In
particular, we emphasize a quantum variational principle that implies the
classical variational principle for invariant tori. We also expose the more
indirect connection between commutation relations and quantization of action
variables. With the help of several standard models with one or two degrees of
freedom, we then illustrate how the methods of Heisenberg matrix mechanics
described in this paper may be used to obtain quantum solutions with a modest
increase in effort compared to semiclassical calculations. We also describe and
apply a method for obtaining leading quantum corrections to EBK results.
Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.
A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism
We present a two particle model to explain the mechanism that stabilizes a
bunch of positively charged ions in an "ion trap resonator" [Pedersen etal,
Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two
ions into two mappings for the free motion in different parts of the trap and
one for a compressing momentum kick. The ions' interaction is modelled by a
time delay, which then changes the balance between adjacent momentum kicks.
Through these mappings we identify the microscopic process that is responsible
for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection
The driven non-linear duffing osillator is a very good, and standard, example
of a quantum mechanical system from which classical-like orbits can be
recovered from unravellings of the master equation. In order to generated such
trajectories in the phase space of this oscillator in this paper we use a the
quantum jumps unravelling together with a suitable application of the
correspondence principle. We analyse the measured readout by considering the
power spectra of photon counts produced by the quantum jumps. Here we show that
localisation of the wave packet from the measurement of the oscillator by the
photon detector produces a concomitant structure in the power spectra of the
measured output. Furthermore, we demonstrate that this spectral analysis can be
used to distinguish between different modes of the underlying dynamics of the
oscillator.Comment: 7 pages, 6 figure
Friedmann Equation for Brans Dicke Cosmology
In the context of Brans-Dicke scalar tensor theory of gravitation, the
cosmological Friedmann equation which relates the expansion rate of the
universe to the various fractions of energy density is analyzed rigorously. It
is shown that Brans-Dicke scalar tensor theory of gravitation brings a
negligible correction to the matter density component of Friedmann equation.
Besides, in addition to and in standard
Einstein cosmology, another density parameter, , is
expected by the theory. This implies that if is found to
be nonzero, data will favor this model instead of the standard Einstein
cosmological model with cosmological constant and will enable more accurate
predictions for the rate of change of Newtonian gravitational constant in the
future.Comment: minor reference change
A multiscale view on inverse statistics and gain/loss asymmetry in financial time series
Researchers have studied the first passage time of financial time series and
observed that the smallest time interval needed for a stock index to move a
given distance is typically shorter for negative than for positive price
movements. The same is not observed for the index constituents, the individual
stocks. We use the discrete wavelet transform to illustrate that this is a long
rather than short time scale phenomenon -- if enough low frequency content of
the price process is removed, the asymmetry disappears. We also propose a new
model, which explain the asymmetry by prolonged, correlated down movements of
individual stocks
Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation
The scientific objectives of the Lisa Technology Package (LTP) experiment, on
board of the LISA Pathfinder mission, demand for an accurate calibration and
validation of the data analysis tools in advance of the mission launch. The
levels of confidence required on the mission outcomes can be reached only with
an intense activity on synthetically generated data. A flexible procedure
allowing the generation of cross-correlated stationary noise time series was
set-up. Multi-channel time series with the desired cross correlation behavior
can be generated once a model for a multichannel cross-spectral matrix is
provided. The core of the procedure is the synthesis of a noise coloring
multichannel filter through a frequency-by-frequency eigendecomposition of the
model cross-spectral matrix and a Z-domain fit. The common problem of initial
transients in noise time series is solved with a proper initialization of the
filter recursive equations. The noise generator performances were tested in a
two dimensional case study of the LTP dynamics along the two principal channels
of the sensing interferometer.Comment: Accepted for publication in Physical Review D (http://prd.aps.org/
Coherent Line Removal: Filtering out harmonically related line interference from experimental data, with application to gravitational wave detectors
We describe a new technique for removing troublesome interference from
external coherent signals present in the gravitational wave spectrum. The
method works when the interference is present in many harmonics, as long as
they remain coherent with one another. The method can remove interference even
when the frequency changes. We apply the method to the data produced by the
Glasgow laser interferometer in 1996 and the entire series of wide lines
corresponding to the electricity supply frequency and its harmonics are
removed, leaving the spectrum clean enough to detect possible signals
previously masked by them. We also study the effects of the line removal on the
statistics of the noise in the time domain. We find that this technique seems
to reduce the level of non-Gaussian noise present in the interferometer and
therefore, it can raise the sensitivity and duty cycle of the detectors.Comment: 14 pages, 8 figures, Revtex, psfig. To appear in Phys. Rev.
Unbiased contaminant removal for 3D galaxy power spectrum measurements
Citation: Kalus, B., Percival, W. J., Bacon, D. J., & Samushia, L. (2016). Unbiased contaminant removal for 3D galaxy power spectrum measurements. Monthly Notices of the Royal Astronomical Society, 463(1), 467-476. doi:10.1093/mnras/stw2008We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum and (iii) debiasing the resulting estimates. For (i), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large matrices (N-mode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window
- …
