520 research outputs found

    The Structure of the Nucleon: Elastic Electromagnetic Form Factors

    Full text link
    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future.Comment: arXiv admin note: text overlap with arXiv:1301.0905, arXiv:hep-ph/0609004, arXiv:1411.6908 by other author

    Nucleon Electromagnetic Form Factors

    Get PDF
    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations

    Determining the size of the proton

    Full text link
    A measurement of the Lamb shift of 49,881.88(76) GHz in muonic hydrogen in conjunction with theoretical estimates of the proton structure effects was recently used to deduce an accurate but rather small radius of the proton. Such an important shift in the understanding of fundamental values needs reconfirmation. Using a different approach with electromagnetic form factors of the proton, we obtain a new expression for the transition energy, Δ=E2P3/2f=2E2S1/2f=1\Delta = E_{2P_{{3}/{2}}}^{f=2} - E_{2S_{{1}/{2}}}^{f=1}, in muonic hydrogen and deduce a proton radius, rp=0.831r_p = 0.831 fm.Comment: 20 pages LaTe

    The RMS Charge Radius of the Proton and Zemach Moments

    Full text link
    On the basis of recent precise measurements of the electric form factor of the proton, the Zemach moments, needed as input parameters for the determination of the proton rms radius from the measurement of the Lamb shift in muonic hydrogen, are calculated. It turns out that the new moments give an uncertainty as large as the presently stated error of the recent Lamb shift measurement of Pohl et al.. De Rujula's idea of a large Zemach moment in order to reconcile the five standard deviation discrepancy between the muonic Lamb shift determination and the result of electronic experiments is shown to be in clear contradiction with experiment. Alternative explanations are touched upon.Comment: 6 pages, 4 figures, final version includes discussion of systematic and numerical error

    Overview of nucleon structure studies

    Full text link
    A brief overview of the recent activity in the measurement of the elastic electromagnetic proton and neutron form factors is presented. It is discussed how the quality of the data has been greatly improved by performing double polarization experiments, and the role of two-photon exchange processes will be highlighted. The spatial information on the quark charge distribibutions in the nucleon resulting from the form factors measurements will be discussed, as well as the steady rate of improvements made in the lattice QCD calculations. It is discussed how generalized parton distributions have emerged as a unifying theme in hadron physics linking the spatial densities extracted from form factors with the quark momentum distribution information residing in quark structure functions. The recent progress in the electromagnetic excitation of the Δ(1232)\Delta(1232) resonance will also briefly be discussed.Comment: prepared for Proceedings of International Nuclear Physics Conference (INPC07), typos corrected + references adde

    The Proton Electromagnetic Form Factor F2F_2 and Quark Orbital Angular Momentum

    Full text link
    We analyze the proton electromagnetic form factor ratio R(Q2)=QF2(Q2)/F1(Q2)R(Q^{2})=QF_2(Q^{2})/F_1(Q^{2}) as a function of momentum transfer Q2Q^{2} within perturbative QCD. We find that the prediction for R(Q2)R(Q^{2}) at large momentum transfer QQ depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we find that $ QF_2/F_1 \sim\ const$ at large momentum transfer, in agreement with recent JLAB data.Comment: 8 pages, 2 figures. To appear in Proceedings of the Workshop QCD 2002, IIT Kanpur, 18-22 November (2002

    A surprising method for polarising antiprotons

    Full text link
    We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to v/c0.002v/c \approx 0.002 the cross section for spin-flip is as large as about 210132 \cdot 10^{13} barn as shown by new QED-calculations of the triple spin-cross sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately 1.510101.5 \cdot 10^{10}/(mm2^2 s) appears to be feasible by means of a radioactive 11^{11}C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 101010^{10} antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure-of-merit by a factor of about ten.Comment: 13 pages, 8 figures; v2: minor language and signification corrections v3: (14 pages, 12 figures) major error, nonapplicable polarisation transfer cross sections replaced by the mandatory spin-flip cross section
    corecore