992 research outputs found

    Dynamical formation and manipulation of Majorana fermions in driven quantum wires

    Full text link
    Controlling the dynamics of Majorana fermions (MF) subject to time-varying driving fields is of fundamental importance for the practical realization of topological quantum computing. In this work we study how it is possible to dynamically generate and maintain the topological phase in one-dimensional superconducting nanowires after the temporal variation of the Hamiltonian parameters. Remarkably we show that for a sudden quench the system can never relax towards a state exhibiting fully developed MF, independently of the initial and final Hamiltonians. Only for sufficiently slow protocols the system behaves adiabatically, and the topological phase can be reached. Finally we address the crucial question of how "adiabatic" a protocol must be in order to manipulate the MF inside the topological phase without deteriorating their Majorana character.Comment: 5 pages, 4 eps figure

    Transient dynamics in the Anderson-Holstein model with interfacial screening

    Full text link
    We study the combined effects of electron-phonon coupling and dot-lead repulsion in the transport properties of the Anderson-Holstein model. We employ a recently proposed nonperturbative method to calculate the transient response of the system. By varying the initial conditions for the time propagation the current exhibits transient oscillations of different nature. We are able to disentangle two dynamical processes, namely the local charge rearrangement due to the dot-lead contacting and the establishment of the nonequilbrium many-body state due to the application of the external bias. These processes involve either Franck-Condon excitations or transitions between the resonant level and the Fermi energy of the leads.Comment: 6 pages, 6 figure

    The dissection algorithm for the second-Born self-energy

    Full text link
    We describe an algorithm to efficiently compute the second-Born self-energy of many-body perurbation theory. The core idea consists in dissecting the set of all four-index Coulomb integrals into properly chosen subsets, thus avoiding to loop over those indices for which the Coulomb integrals are zero or negligible. The scaling properties of the algorithm with the number of basis functions is discussed. The computational gain is demonstrated in the case of one-particle Kohn-Sham basis for organic molecules.Comment: 6 pages, contribution to the proceedings of the workshop "Progress in Nonequilibrium Green's Function VII

    Cooper-pair propagation and superconducting correlations in graphene

    Get PDF
    We investigate the Cooper-pair propagation and the proximity effect in graphene under conditions in which the distance L between superconducting electrodes is much larger than the width W of the contacts. In the case of undoped graphene, supercurrents may exist with a spatial decay proportional to W^2/L^3. This changes upon doping into a 1/L^2 behavior, opening the possibility to observe a supercurrent over length scales above 1 micron at suitable doping levels. We also show that there is in general a crossover temperature T ~ v_F/k_B L that marks the onset of the strong decay of the supercurrent, and that corresponds to the scale below which the Cooper pairs are not disrupted by thermal effects during their propagation.Comment: 5 pages, 2 figures; corrected discussio

    CHEERS: A tool for Correlated Hole-Electron Evolution from Real-time Simulations

    Full text link
    We put forward a practical nonequilibrium Green's function (NEGF) scheme to perform real-time evolutions of many-body interacting systems driven out of equilibrium by external fields. CHEERS is a computational tool to solve the NEGF equation of motion in the so called generalized Kadanoff-Baym ansatz and it can be used for model systems as well as first-principles Hamiltonians. Dynamical correlation (or memory) effects are added to the Hartree-Fock dynamics through a many-body self-energy. Applications to time-dependent quantum transport, time-resolved photoabsorption and other ultrafast phenomena are discussed.Comment: 15 pages, 6 figures, to be published, J. Phys.: Condens. Matter (2018

    Missing derivative discontinuity of the exchange-correlation energy for attractive interactions: the charge Kondo effect

    Full text link
    We show that the energy functional of ensemble Density Functional Theory (DFT) [Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence the exchange-correlation (XC) potential is not discontinuous for all N. We highlight the importance of this exact result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened. We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.Comment: 5 pages, 5 eps figure. Phys. Rev. B 86, 081409(R) (2012

    Time-resolved charge fractionalization in inhomogeneous Luttinger liquids

    Full text link
    The recent observation of charge fractionalization in single Tomanga-Luttinger liquids (TLLs) [Kamata et al., Nature Nanotech., 9 177 (2014)] opens new routes for a systematic investigation of this exotic quantum phenomenon. In this Letter we perform measurements on two adjacent TLLs and put forward an accurate theoretical framework to address the experiments. The theory is based on the plasmon scattering approach and can deal with injected charge pulses of arbitrary shape in TLL regions. We accurately reproduce and interpret the time-resolved multiple fractionalization events in both single and double TLLs. The effect of inter-correlations between the two TLLs is also discussed.Comment: 5 pages + Supplementary Material. To appear in Phys. Rev. B: Rapid. Com
    corecore