10,888 research outputs found
The roots of self-awareness
In this paper we provide an account of the structural underpinnings of self-awareness. We offer both an abstract, logical account-by way of suggestions for how to build a genuinely self-referring artificial agent-and a biological account, via a discussion of the role of somatoception in supporting and structuring self-awareness more generally. Central to the account is a discussion of the necessary motivational properties of self-representing mental tokens, in light of which we offer a novel definition of self-representation. We also discuss the role of such tokens in organizing self-specifying information, which leads to a naturalized restatement of the guarantee that introspective awareness is immune to error due to mis-identification of the subject
Renormalization in general theories with inter-generation mixing
We derive general and explicit expressions for the unrenormalized and
renormalized dressed propagators of fermions in parity-nonconserving theories
with inter-generation mixing. The mass eigenvalues, the corresponding mass
counterterms, and the effect of inter-generation mixing on their determination
are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization
conditions and employing a number of very useful relations from Matrix Algebra,
we show explicitly that the renormalized dressed propagators satisfy important
physical properties.Comment: 14 pages; to appear in Phys. Rev.
Logic, self-awareness and self-improvement: The metacognitive loop and the problem of brittleness
This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that artificial agents should be able notice when something is amiss, assess the anomaly, and guide a solution into place. We call this basic strategy of self-guided learning the metacognitive loop; it involves the system monitoring, reasoning about, and, when necessary, altering its own decision-making components. In this essay, we (a) argue that equipping agents with a metacognitive loop can help to overcome the brittleness problem, (b) detail the metacognitive loop and its relation to our ongoing work on time-sensitive commonsense reasoning, (c) describe specific, implemented systems whose perturbation tolerance was improved by adding a metacognitive loop, and (d) outline both short-term and long-term research agendas
Several types of types in programming languages
Types are an important part of any modern programming language, but we often
forget that the concept of type we understand nowadays is not the same it was
perceived in the sixties. Moreover, we conflate the concept of "type" in
programming languages with the concept of the same name in mathematical logic,
an identification that is only the result of the convergence of two different
paths, which started apart with different aims. The paper will present several
remarks (some historical, some of more conceptual character) on the subject, as
a basis for a further investigation. The thesis we will argue is that there are
three different characters at play in programming languages, all of them now
called types: the technical concept used in language design to guide
implementation; the general abstraction mechanism used as a modelling tool; the
classifying tool inherited from mathematical logic. We will suggest three
possible dates ad quem for their presence in the programming language
literature, suggesting that the emergence of the concept of type in computer
science is relatively independent from the logical tradition, until the
Curry-Howard isomorphism will make an explicit bridge between them.Comment: History and Philosophy of Computing, HAPOC 2015. To appear in LNC
Feynman Propagator for a Free Scalar Field on a Causal Set
The Feynman propagator for a free bosonic scalar field on the discrete
spacetime of a causal set is presented. The formalism includes scalar field
operators and a vacuum state which define a scalar quantum field theory on a
causal set. This work can be viewed as a novel regularisation of quantum field
theory based on a Lorentz invariant discretisation of spacetime.Comment: 4 pages, 2 plots. Minor updates to match published versio
Subject preferences of fifth-grade children.
Thesis (Ed.M.)--Boston University
N.B.:Pages 155 and 309 are missing from original thesis
- …
