167 research outputs found
An Efficiently Solvable Quadratic Program for Stabilizing Dynamic Locomotion
We describe a whole-body dynamic walking controller implemented as a convex
quadratic program. The controller solves an optimal control problem using an
approximate value function derived from a simple walking model while respecting
the dynamic, input, and contact constraints of the full robot dynamics. By
exploiting sparsity and temporal structure in the optimization with a custom
active-set algorithm, we surpass the performance of the best available
off-the-shelf solvers and achieve 1kHz control rates for a 34-DOF humanoid. We
describe applications to balancing and walking tasks using the simulated Atlas
robot in the DARPA Virtual Robotics Challenge.Comment: 6 pages, published at ICRA 201
Radar studies of arctic ice and development of a real-time Arctic ice type identification system
Studies were conducted to develop a real-time Arctic ice type identification system. Data obtained by NASA Mission 126, conducted at Pt. Barrow, Alaska (Site 93) in April 1970 was analyzed in detail to more clearly define the major mechanisms at work affecting the radar energy illuminating a terrain cell of sea ice. General techniques for reduction of the scatterometer data to a form suitable for application of ice type decision criteria were investigated, and the electronic circuit requirements for implementation of these techniques were determined. Also, consideration of circuit requirements are extended to include the electronics necessary for analog programming of ice type decision algorithms. After completing the basic circuit designs a laboratory model was constructed and a preliminary evaluation performed. Several system modifications for improved performance are suggested. (Modified author abstract
An optimal pursuit-evasion strategy for linear sampled-data systems
Differential game theory and dynamic programming are applied
to derive the optimal strategy, or sequence of controls, for a class
of linear, sampled-data , pursuit-evasion problems. The necessary
and sufficient conditions for existence of the solution are derived.
A digital computer program for simulating control generation and system
trajectories is given. The results of simulation tests using this
digital computer model are presented to demonstrate the salient
characteristics of the strategy.http://www.archive.org/details/optimalpursuitev00hutcLieutenant, United States Nav
System and method for calibrating a rotary absolute position sensor
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device
Framework and Method for Controlling a Robotic System Using a Distributed Computer Network
A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks
Method and apparatus for electromagnetically braking a motor
An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller
A geodesic interior-point method for linear optimization over symmetric cones
We develop a new interior-point method for symmetric-cone optimization, a
common generalization of linear, second-order-cone, and semidefinite
programming. Our key idea is updating iterates with a geodesic of the cone
instead of the kernel of the linear constraints. This approach yields a
primal-dual-symmetric, scale-invariant, and line-search-free algorithm that
uses just half the variables of a standard primal-dual method. With elementary
arguments, we establish polynomial-time convergence matching the standard
square-root-n bound. Finally, we prove global convergence of a long-step
variant and compare the approaches computationally. For linear programming, our
algorithms reduce to central-path tracking in the log domain
Integrated High-Speed Torque Control System for a Robotic Joint
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA)
Bradley Permenter in a Junior Piano Recital
This is the program for the junior piano recital of Bradley Permenter. The recital took place on November 1, 1985, in the Mabee Fine Arts Center Recital Hall
- …
