131 research outputs found

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al

    Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes

    Get PDF
    BACKGROUND: GLUT10 (gene symbol SLC2A10) is a facilitative glucose transporter within the type 2 diabetes (T2DM)-linked region on chromosome 20q12-13.1. Therefore, we evaluated GLUT10 as a positional candidate gene for T2DM in Caucasian Americans. METHODS: Twenty SNPs including 4 coding, 10 intronic and 6 5' and 3' to the coding sequence were genotyped across a 100 kb region containing the SLC2A10 gene in DNAs from 300 T2DM cases and 310 controls using the Sequenom MassArray Genotyping System. Allelic association was evaluated, and linkage disequilibrium (LD) and haplotype structure of SLC2A10 were also determined to assess whether any specific haplotypes were associated with T2DM. RESULTS: Of these variants, fifteen had heterozygosities greater than 0.80 and were analyzed further for association with T2DM. No evidence of significant association was observed for any variant with T2DM (all P ≥ 0.05), including Ala206Thr (rs2235491) which was previously reported to be associated with fasting insulin. Linkage disequilibrium analysis suggests that the SLC2A10 gene is contained in a single haplotype block of 14 kb. Haplotype association analysis with T2DM did not reveal any significant differences between haplotype frequencies in T2DM cases and controls. CONCLUSION: From our findings, we can conclude that sequence variants in or near GLUT10 are unlikely to contribute significantly to T2DM in Caucasian Americans

    Goettingen Minipigs (GMP): Comparison of Two Different Models for Inducing Diabetes

    Get PDF
    Purpose: Preclinical experiments on large animals are indispensable for evaluating the effectiveness of diabetes therapies. Miniature swine are well suited for such studies due to their physiological and pathophysiological responses. Methods: We compare two methods for inducing diabetes in Goettingen minipigs (GMP), in five with the beta cell toxin streptozotocin (STZ) and in five other GMP by total pancreatectomy (PE). Glucose homeostasis was assessed with the intravenous glucose-tolerance test (IVGTT) and continual monitoring of interstitial glucose levels. At conclusion of the observation period, the pancreata were examined histologically. Three non-diabetic GMP served as control group. Results: The IVGTT revealed markedly diabetic profiles in both GMP groups. STZ-GMP were found to harbor residual C-peptides and scattered insulin-positive cells in the pancreas. PE-GMP survived the total pancreatectomy only with intensive postoperative care. Conclusions: Although both methods reliably induced diabetes in GMP, the PE-GMP clearly had more health problems and required a greater expenditure of time and resources. The PE-GMP model, however, was better at eliminating endogenous insulin and C-peptide than the STZ-GMP model

    Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.</p> <p>Methods</p> <p>A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in <it>KCNJ11/Kir6.2</it>, K121Q in <it>ENPP1</it>, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in <it>TCF7L2 </it>encoding transcription factor 7-like2, and rs7923837 in <it>HHEX </it>encoding the homeobox, hematopoietically expressed transcription factor.</p> <p>Results</p> <p><it>TCF7L2</it>-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], <it>P </it>= 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], <it>P </it>= 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.</p> <p>Conclusion</p> <p>In the Tunisian population, <it>TCF7L2</it>-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.</p

    Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells

    Get PDF
    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes

    Control of Precursor Maturation and Disposal Is an Early Regulative Mechanism in the Normal Insulin Production of Pancreatic β-Cells

    Get PDF
    The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2+/Akita mice in response to a mutation (C96Y) in the insulin 2 (Ins2) gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO). Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER) and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (a)typical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis

    Exercise therapy, manual therapy, or both, for osteoarthritis of the hip or knee: a factorial randomised controlled trial protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-pharmacological, non-surgical interventions are recommended as the first line of treatment for osteoarthritis (OA) of the hip and knee. There is evidence that exercise therapy is effective for reducing pain and improving function in patients with knee OA, some evidence that exercise therapy is effective for hip OA, and early indications that manual therapy may be efficacious for hip and knee OA. There is little evidence as to which approach is more effective, if benefits endure, or if providing these therapies is cost-effective for the management of this disorder. The MOA Trial (Management of OsteoArthritis) aims to test the effectiveness of two physiotherapy interventions for improving disability and pain in adults with hip or knee OA in New Zealand. Specifically, our primary objectives are to investigate whether:</p> <p>1. Exercise therapy versus no exercise therapy improves disability at 12 months;</p> <p>2. Manual physiotherapy versus no manual therapy improves disability at 12 months;</p> <p>3. Providing physiotherapy programmes in addition to usual care is more cost-effective than usual care alone in the management of osteoarthritis at 24 months.</p> <p>Methods</p> <p>This is a 2 × 2 factorial randomised controlled trial. We plan to recruit 224 participants with hip or knee OA. Eligible participants will be randomly allocated to receive either: (a) a supervised multi-modal exercise therapy programme; (b) an individualised manual therapy programme; (c) both exercise therapy and manual therapy; or, (d) no trial physiotherapy. All participants will continue to receive usual medical care. The outcome assessors, orthopaedic surgeons, general medical practitioners, and statistician will be blind to group allocation until the statistical analysis is completed. The trial is funded by Health Research Council of New Zealand Project Grants (Project numbers 07/199, 07/200).</p> <p>Discussion</p> <p>The MOA Trial will be the first to investigate the effectiveness and cost-effectiveness of providing physiotherapy programmes of this kind, for the management of pain and disability in adults with hip or knee OA.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry ref: ACTRN12608000130369.</p

    Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

    Get PDF
    In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes
    corecore