49 research outputs found

    Cosmological Models with Variable Gravitational and Cosmological constants in R2R^{2} Gravity

    Full text link
    We consider the evolution of a flat Friedmann-Roberstson-Walker Universe in a higher derivative theories, including αR2\alpha R^{2} terms to the Einstein-Hilbert action in the presence of a variable gravitational and cosmological constants. We study here the evolution of the gravitational and cosmological constants in the presence of radiation and matter domination era of the universe. We present here new cosmological solutions which are physically interesting for model building.Comment: 14 pages, no figure. to be published in Int. J. Mod. Phys.

    Spherically symmetric vacuum solutions of modified gravity theory in higher dimensions

    Full text link
    In this paper we investigate spherically symmetric vacuum solutions of f(R)f(R) gravity in a higher dimensional spacetime. With this objective we construct a system of non-linear differential equations, whose solutions depend on the explicit form assumed for the function F(R)=df(R)dRF(R)=\frac{df(R)}{dR}. We explicit show that for specific classes of this function exact solutions from the field equations are obtained; also we find approximated results for the metric tensor for more general cases admitting F(R)F(R) close to the unity.Comment: 14 pages, no figure. New version accepted for publication in EPJ

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Graviton mass and total relative density of mass Omega_tot in Universe

    Full text link
    It is noticed that the total relative density of mass in the Universe Omega_tot should exceed 1, i.e. Omega_tot=1+f^2/6 according to the field relativistic theory of gravity (RTG), which is free of the cosmological singularity and which provides the Euclidean character for the 3-dimensional space. Here f is the ratio of the graviton mass m_g to the contemporary value of the ``Hubble mass'' m^0_H=\hbar H_0/c^2\simeq 3,8\cdot 10^{-66}h(g) (h=0,71\pm0,07). Applying results of the experimental data processing presented in [1] an upper limit for the graviton mass is established as m_g\leq 3,2\cdot 10^{-66}g at the 95% confidence level.Comment: 8 pages, latex fil

    A Model of Dark Energy and Dark Matter

    Full text link
    A dynamical model for the dark energy is presented in which the ``quintessence'' field is the axion, aZa_Z, of a spontaneously broken global U(1)A(Z)U(1)_{A}^{(Z)} symmetry whose potential is induced by the instantons of a new gauge group SU(2)ZSU(2)_Z. The SU(2)ZSU(2)_Z coupling becomes large at a scale ΛZ103eV\Lambda_Z \sim 10^{-3} eV starting from an initial value MM at high energy which is of the order of the Standard Model (SM) couplings at the same scale MM. A perspective on a possible unification of SU(2)ZSU(2)_Z with the SM will be briefly discussed. We present a scenario in which aZa_Z is trapped in a false vacuum characterized by an energy density (103eV)4\sim (10^{-3} eV)^4. The lifetime of this false vacuum is estimated to be extremely large. Other estimates relevant to the ``coincidence issue'' include the ages of the universe when the aZa_Z potential became effective, when the acceleration ``began'' and when the energy density of the false vacuum became comparable to that of (baryonic and non-baryonic) matter. Other cosmological consequences include a possible candidate for the weakly interacting (WIMP) Cold Dark Matter as well as a scenario for leptogenesis. A brief discussion on possible laboratory detections of some of the particles contained in the model will also be presented.Comment: 24 double-column pages, 14 figures; Added references; Corrected Typo

    Scalar fields in an anisotropic closed universe

    Get PDF
    We study in this article a class of homogeneous, but anisotropic cosmological models in which shear viscosity is included. Within the matter content we consider a component (the quintessence component) determined by the barotropic equations of state, p=αρp=\alpha \rho, with α<0\alpha < 0. We establish conditions under which a closed axisymmetrical cosmological model may look flat al low redshift.Comment: 6 pages, Latex, 2 figures, accepted in Phys. Rev.

    Density perturbations in an Universe dominated by the Chaplygin gas

    Get PDF
    We study the fate of density perturbations in an Universe dominate by the Chaplygin gas, which exhibit negative pressure. We show that it is possible to obtain the value for the density contrast observed in large scale structure of the Universe by fixing a free parameter in the equation of state of this gas. The negative character of pressure must be significant only very recently.Comment: Latex file, 5 page

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ

    An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae

    Get PDF
    Type Ia Supernovae (SNe Ia) form an observationally uniform class of stellar explosions, in that more luminous objects have smaller decline-rates. This one-parameter behavior allows SNe Ia to be calibrated as cosmological `standard candles', and led to the discovery of an accelerating Universe. Recent investigations, however, have revealed that the true nature of SNe Ia is more complicated. Theoretically, it has been suggested that the initial thermonuclear sparks are ignited at an offset from the centre of the white-dwarf (WD) progenitor, possibly as a result of convection before the explosion. Observationally, the diversity seen in the spectral evolution of SNe Ia beyond the luminosity decline-rate relation is an unresolved issue. Here we report that the spectral diversity is a consequence of random directions from which an asymmetric explosion is viewed. Our findings suggest that the spectral evolution diversity is no longer a concern in using SNe Ia as cosmological standard candles. Furthermore, this indicates that ignition at an offset from the centre of is a generic feature of SNe Ia.Comment: To appear in Nature, 1st July 2010 issue. 36 pages including supplementary materials. 4 figures, 3 supplementary figures, 1 supplementary tabl

    Exploring Kinetics of Phenol Biodegradation by Cupriavidus taiwanesis 187

    Get PDF
    Phenol biodegradation in batch systems using Cupriavidus taiwanesis 187 has been experimentally studied. To determine the various parameters of a kinetic model, combinations of rearranged equations have been evaluated using inverse polynomial techniques for parameter estimation. The correlations between lag phase and phase concentration suggest that considering phenol inhibition in kinetic analysis is helpful for characterizing phenol degradation. This study proposes a novel method to determine multiplicity of steady states in continuous stirred tank reactors (CSTRs) in order to identify the most appropriate kinetics to characterize the dynamics of phenol biodegradation
    corecore