622 research outputs found
Decoherence and the Nature of System-Environment Correlations
We investigate system-environment correlations based on the exact dynamics of
a qubit and its environment in the framework of pure decoherence (phase
damping). We focus on the relation of decoherence and the build-up of
system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit
state. In the commonly employed regime where the qubit dynamics can be
described by a Markov master equation of Lindblad type, we find that for almost
all qubit initial states inside the Bloch sphere, decoherence is complete while
the total state is still separable - no entanglement is involved. In general,
both "separable" and "entangling" decoherence occurs, depending on temperature
and initial qubit state. Moreover, we find situations where classical and
quantum correlations periodically alternate as a function of time in the regime
of low temperatures
New Optimization Methods for Converging Perturbative Series with a Field Cutoff
We take advantage of the fact that in lambda phi ^4 problems a large field
cutoff phi_max makes perturbative series converge toward values exponentially
close to the exact values, to make optimal choices of phi_max. For perturbative
series terminated at even order, it is in principle possible to adjust phi_max
in order to obtain the exact result. For perturbative series terminated at odd
order, the error can only be minimized. It is however possible to introduce a
mass shift in order to obtain the exact result. We discuss weak and strong
coupling methods to determine the unknown parameters. The numerical
calculations in this article have been performed with a simple integral with
one variable. We give arguments indicating that the qualitative features
observed should extend to quantum mechanics and quantum field theory. We found
that optimization at even order is more efficient that at odd order. We compare
our methods with the linear delta-expansion (LDE) (combined with the principle
of minimal sensitivity) which provides an upper envelope of for the accuracy
curves of various Pade and Pade-Borel approximants. Our optimization method
performs better than the LDE at strong and intermediate coupling, but not at
weak coupling where it appears less robust and subject to further improvements.
We also show that it is possible to fix the arbitrary parameter appearing in
the LDE using the strong coupling expansion, in order to get accuracies
comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde
System-environment correlations and Non-Markovian dynamics
We determine the total state dynamics of a dephasing open quantum system
using the standard environment of harmonic oscillators. Of particular interest
are random unitary approaches to the same reduced dynamics and
system-environment correlations in the full model. Concentrating on a model
with an at times negative dephasing rate, the issue of "non-Markovianity" will
also be addressed. Crucially, given the quantum environment, the appearance of
non-Markovian dynamics turns out to be accompanied by a loss of
system-environment correlations. Depending on the initial purity of the qubit
state, these system-environment correlations may be purely classical over the
whole relevant time scale, or there may be intervals of genuine
system-environment entanglement. In the latter case, we see no obvious relation
between the build-up or decay of these quantum correlations and
"Non-Markovianity"
The Effect of Weak Interactions on the Ultra-Relativistic Bose-Einstein Condensation Temperature
We calculate the ultra-relativistic Bose-Einstein condensation temperature of
a complex scalar field with weak lambda Phi^4 interaction. We show that at high
temperature and finite density we can use dimensional reduction to produce an
effective three-dimensional theory which then requires non-perturbative
analysis. For simplicity and ease of implementation we illustrate this process
with the linear delta expansion.Comment: Latex2e, 12 pages, three eps figures, replacement with additional
discussion and extra figur
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Social presence and dishonesty in retail
Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/
On the Divergence of Perturbation Theory. Steps Towards a Convergent Series
The mechanism underlying the divergence of perturbation theory is exposed.
This is done through a detailed study of the violation of the hypothesis of the
Dominated Convergence Theorem of Lebesgue using familiar techniques of Quantum
Field Theory. That theorem governs the validity (or lack of it) of the formal
manipulations done to generate the perturbative series in the functional
integral formalism. The aspects of the perturbative series that need to be
modified to obtain a convergent series are presented. Useful tools for a
practical implementation of these modifications are developed. Some resummation
methods are analyzed in the light of the above mentioned mechanism.Comment: 42 pages, Latex, 4 figure
Quantum teleportation on a photonic chip
Quantum teleportation is a fundamental concept in quantum physics which now
finds important applications at the heart of quantum technology including
quantum relays, quantum repeaters and linear optics quantum computing (LOQC).
Photonic implementations have largely focussed on achieving long distance
teleportation due to its suitability for decoherence-free communication.
Teleportation also plays a vital role in the scalability of photonic quantum
computing, for which large linear optical networks will likely require an
integrated architecture. Here we report the first demonstration of quantum
teleportation in which all key parts - entanglement preparation, Bell-state
analysis and quantum state tomography - are performed on a reconfigurable
integrated photonic chip. We also show that a novel element-wise
characterisation method is critical to mitigate component errors, a key
technique which will become increasingly important as integrated circuits reach
higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted
manuscript; Nature Photonics (2014
Accessibility levels of Portuguese Enterprise websites: Equal opportunities for all?
Artigo revisto disponível online 18 Maio, 2011 (iFirst)Web accessibility is growing in importance as time goes by. Alongside this growth we find an increasing need for access to Web resources by those with some sort of disability. The Web is very important for spreading information and for promoting interaction between the various elements in society. Given this, it is essential that the Web presents itself as a totally accessible resource, so that it can help disabled citizens and their integration in society. This obligation should be even greater for enterprises as primarily the Web is used as a marketing and business platform.
With this document we present indicators regarding the [lack of] accessibility levels of Portuguese websites. This article is divided into eight parts containing theoretical and background considerations leading up to two different studies which the research team undertook. In the first study (considering WCAG 1.0) we make a comparison between the 1,000 largest Portuguese enterprises (annual sales volume) and the 1,000 best Portuguese SMEs1 using a specialized software tool. In the second study a group of recommendations towards accessibility are made; these recommendations were achieved through a focus group interaction. We do also, however, present an insight into the WCAG 2.0 influence on existent accessibility levels
- …
