209 research outputs found
Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects
We derive the post-Newtonian next-to-leading order conservative spin-orbit
and spin(a)-spin(b) gravitational interaction Hamiltonians for arbitrary many
compact objects. The spin-orbit Hamiltonian completes the knowledge of
Hamiltonians up to and including 2.5PN for the general relativistic three-body
problem. The new Hamiltonians include highly nontrivial three-body
interactions, in contrast to the leading order consisting of two-body
interactions only. This may be important for the study of effects like Kozai
resonances in mergers of black holes with binary black holes.Comment: 13 pages, 1 Mathematica source file, v2: submitted version, v3:
published version, some minor correction
Model-based asymptotically optimal dispersion measure correction for pulsar timing
In order to reach the sensitivity required to detect gravitational waves,
pulsar timing array experiments need to mitigate as much noise as possible in
timing data. A dominant amount of noise is likely due to variations in the
dispersion measure. To correct for such variations, we develop a statistical
method inspired by the maximum likelihood estimator and optimal filtering. Our
method consists of two major steps. First, the spectral index and amplitude of
dispersion measure variations are measured via a time-domain spectral analysis.
Second, the linear optimal filter is constructed based on the model parameters
found in the first step, and is used to extract the dispersion measure
variation waveforms. Compared to current existing methods, this method has
better time resolution for the study of short timescale dispersion variations,
and generally produces smaller errors in waveform estimations. This method can
process irregularly sampled data without any interpolation because of its
time-domain nature. Furthermore, it offers the possibility to interpolate or
extrapolate the waveform estimation to regions where no data is available.
Examples using simulated data sets are included for demonstration.Comment: 15 pages, 15 figures, submitted 15th Sept. 2013, accepted 2nd April
2014 by MNRAS. MNRAS, 201
Two approaches to testing general relativity in the strong-field regime
Observations of compact objects in the electromagnetic spectrum and the
detection of gravitational waves from them can lead to quantitative tests of
the theory of general relativity in the strong-field regime following two very
different approaches. In the first approach, the general relativistic field
equations are modified at a fundamental level and the magnitudes of the
potential deviations are constrained by comparison with observations. In the
second approach, the exterior spacetimes of compact objects are parametrized in
a phenomenological way, the various parameters are measured observationally,
and the results are finally compared against the general relativistic
predictions. In this article, I discuss the current status of both approaches,
focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in
Gravit
A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order
The motion of a small compact object in a background spacetime is
investigated in the context of a model nonlinear scalar field theory. This
model is constructed to have a perturbative structure analogous to the General
Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the
effective field theory approach to this model and calculate the finite part of
the self force on the small compact object through third order in the ratio of
the size of the compact object to the curvature scale of the background (e.g.,
black hole) spacetime. We use well-known renormalization methods and
demonstrate the consistency of the formalism in rendering the self force finite
at higher orders within a point particle prescription for the small compact
object. This nonlinear scalar model should be useful for studying various
aspects of higher-order self force effects in EMRIs but within a comparatively
simpler context than the full gravitational case. These aspects include
developing practical schemes for higher order self force numerical
computations, quantifying the effects of transient resonances on EMRI waveforms
and accurately modeling the small compact object's motion for precise
determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure
Next to leading order spin-orbit effects in the motion of inspiralling compact binaries
Using effective field theory (EFT) techniques we calculate the
next-to-leading order (NLO) spin-orbit contributions to the gravitational
potential of inspiralling compact binaries. We use the covariant spin
supplementarity condition (SSC), and explicitly prove the equivalence with
previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the
direct application of the Newton-Wigner SSC at the level of the action leads to
the correct dynamics using a canonical (Dirac) algebra. This paper then
completes the calculation of the necessary spin dynamics within the EFT
formalism that will be used in a separate paper to compute the spin
contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To
appear in Class. Quant. Gra
Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order
Using effective field theory techniques we calculate the source multipole
moments needed to obtain the spin contributions to the power radiated in
gravitational waves from inspiralling compact binaries to third Post-Newtonian
order (3PN). The multipoles depend linearly and quadratically on the spins and
include both spin(1)spin(2) and spin(1)spin(1) components. The results in this
paper provide the last missing ingredient required to determine the phase
evolution to 3PN including all spin effects which we will report in a separate
paper.Comment: 35 pages, 7 figures. Published versio
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the
noise present in the individual pulsar timing data. Noise may be either
intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include
rotational instabilities, for example. Extrinsic sources of noise include
contributions from physical processes which are not sufficiently well modelled,
for example, dispersion and scattering effects, analysis errors and
instrumental instabilities. We present the results from a noise analysis for 42
millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For
characterising the low-frequency, stochastic and achromatic noise component, or
"timing noise", we employ two methods, based on Bayesian and frequentist
statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent
results. For the remaining 17 MSPs, we place upper limits on the timing noise
amplitude at the 95% confidence level. We additionally place an upper limit on
the contribution to the pulsar noise budget from errors in the reference
terrestrial time standards (below 1%), and we find evidence for a noise
component which is present only in the data of one of the four used telescopes.
Finally, we estimate that the timing noise of individual pulsars reduces the
sensitivity of this data set to an isotropic, stochastic GW background by a
factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable,
inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal
Astronomical Societ
A millisecond pulsar in an extremely wide binary system
International audienceWe report on 22 yrs of radio timing observations of the millisecond pulsar J1024−0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869−0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = −1.0, T eff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024−0719. We conclude that PSR J1024−0719 and 2MASS J10243869−0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives , which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (P b > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s −1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024−0719 in light of its inclusion in pulsar timing arrays
From spin noise to systematics:stochastic processes in the first International Pulsar Timing Array data release
We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643-1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437-4715 data set improves the upper limit on a fiducial GW background by similar to 60 per cent compared to a model that includes DM variations and spin-noise only
- …
