457 research outputs found
Single-parameter adiabatic charge pumping in carbon nanotube resonators
Single-parameter adiabatic charge pumping, induced by a nearby
radio-frequency antenna, is achieved in suspended carbon nanotubes close to the
mechanical resonance. The charge pumping is due to an important dynamic
adjustment of the oscillating motion to the antenna signal and it is different
from the mechanism active in the two-parameter pumping. Finally, the second
harmonic oscillator response shows an interesting relationship with the first
harmonic that should be experimentally observed
Interplay between electron-electron and electron-vibration interactions on the thermoelectric properties of molecular junctions
The linear thermoelectric properties of molecular junctions are theoretically
studied close to room temperature within a model including electron-electron
and electron-vibration interactions on the molecule. A nonequilibrium adiabatic
approach is generalized to include large Coulomb repulsion through a
self-consistent procedure and applied to the investigation of large molecules,
such as fullerenes, within the Coulomb blockade regime. The focus is on the
phonon thermal conductance which is quite sensitive to the effects of strong
electron-electron interactions within the intermediate electron-vibration
coupling regime. The electron-vibration interaction enhances the phonon and
electron thermal conductance, and it reduces the charge conductance and the
thermopower inducing a decrease of the thermoelectric figure of merit. For
realistic values of junction parameters, the peak values of the thermoelectric
figure of merit are still of the order of unity since the phonon thermal
conductance can be even smaller than the electron counterpart.Comment: 8 pages, 1 Appendix, 12 pages. arXiv admin note: substantial text
overlap with arXiv:1406.377
Tiebout with Politics: Capital Tax Competition and Constitutional Choices.
This paper examines how capital tax competition affects jurisdiction formation. We describe a locational model of public goods provision, where jurisdictions are represented by coalitions of consumers with similar tastes, and where the levels of taxation and local public goods provision within jurisdictions are selected by majority voting. We show that in this setting interjurisdictional tax competition results in an enlargement of jurisdictional boundaries, and can raise welfare for all members of a jurisdiction even in the absence of intrajurisdictional transfers.
Electron-vibration effects on the thermoelectric efficiency of molecular junctions
The thermoelectric properties of a molecular junction model, appropriate for
large molecules such as fullerenes, are studied within a non-equilibrium
adiabatic approach in the linear regime at room temperature. A self-consistent
calculation is implemented for electron and phonon thermal conductance showing
that both increase with the inclusion of the electron-vibration coupling.
Moreover, we show that the deviations from the Wiedemann-Franz law are
progressively reduced upon increasing the interaction between electronic and
vibrational degrees of freedom. Consequently, the junction thermoelectric
efficiency is substantially reduced by the electron-vibration coupling. Even
so, for realistic parameters values, the thermoelectric figure of merit can
still have peaks of the order of unity. Finally, in the off-resonant electronic
regime, our results are compared with those of an approach which is exact for
low molecular electron densities. We give evidence that in this case additional
quantum effects, not included in the first part of this work, do not affect
significantly the junction thermoelectric properties in any temperature regime.Comment: 15 pages, 11 figures, 2 Appendice
Interplay of charge, spin and lattice degrees of freedom on the spectral properties of the one-dimensional Hubbard-Holstein model
We calculate the spectral function of the one dimensional Hubbard-Holstein
model using the time dependent Density Matrix Renormalization Group (tDMRG),
focusing on the regime of large local Coulomb repulsion, and away from
electronic half-filling. We argue that, from weak to intermediate
electron-phonon coupling, phonons interact only with the electronic charge, and
not with the spin degrees of freedom. For strong electron-phonon interaction,
spinon and holon bands are not discernible anymore and the system is well
described by a spinless polaronic liquid. In this regime, we observe multiple
peaks in the spectrum with an energy separation corresponding to the energy of
the lattice vibrations (i.e., phonons). We support the numerical results by
introducing a well controlled analytical approach based on Ogata-Shiba's
factorized wave-function, showing that the spectrum can be understood as a
convolution of three contributions, originating from charge, spin, and lattice
sectors. We recognize and interpret these signatures in the spectral properties
and discuss the experimental implications.Comment: 8 pages, 7 figure
Spectral properties and infrared absorption in manganites
Within a recently proposed variational approach it has been shown that, in
perovskites with , near the metal-insulator
transition, the combined effect of the magnetic and electron-phonon
interactions pushes the system toward a regime of two coexisting phases: a low
electron density one made by itinerant large polarons forming ferromagnetic
domains and a high electron density one made by localized small polarons giving
rise to paramagnetic or antiferromagnetic domains depending on temperature.
Employing the above-mentioned variational scheme, in this paper spectral and
optical properties of manganites are derived for at different
temperatures. It is found that the phase separation regime induces a robust
pseudogap in the excitation spectrum of the system. Then the conductivity
spectra are characterized by a transfer of spectral weight from high to low
energies, as the temperature decreases. In the metallic ferromagnetic
phase, at low two types of infrared absorption come out: a Drude term and a
broad absorption band due respectively to the coherent and incoherent motion of
large polarons. The obtained results turn out in good agreement with
experiments.Comment: 9 figure
Stochastic dynamics for a single vibrational mode in molecular junctions
We propose a very accurate computational scheme for the dynamics of a
classical oscillator coupled to a molecular junction driven by a finite bias,
including the finite mass effect. We focus on two minimal models for the
molecular junction: Anderson-Holstein (AH) and two-site Su-Schrieffer-Heeger
(SSH) models. As concerns the oscillator dynamics, we are able to recover a
Langevin equation confirming what found by other authors with different
approaches and assessing that quantum effects come from the electronic
subsystem only. Solving numerically the stochastic equation, we study the
position and velocity distribution probabilities of the oscillator and the
electronic transport properties at arbitrary values of electron-oscillator
interaction, gate and bias voltages. The range of validity of the adiabatic
approximation is established in a systematic way by analyzing the behaviour of
the kinetic energy of the oscillator. Due to the dynamical fluctuations, at
intermediate bias voltages, the velocity distributions deviate from a gaussian
shape and the average kinetic energy shows a non monotonic behaviour. In this
same regime of parameters, the dynamical effects favour the conduction far from
electronic resonances where small currents are observed in the infinite mass
approximation. These effects are enhanced in the two-site SSH model due to the
presence of the intermolecular hopping t. Remarkably, for sufficiently large
hopping with respect to tunneling on the molecule, small interaction strengths
and at intermediate bias (non gaussian regime), we point out a correspondence
between the minima of the kinetic energy and the maxima of the dynamical
conductance.Comment: 19 pages, 16 figures, submitted to Physical Review
Plasmons in topological insulator cylindrical nanowires
We present a theoretical analysis of Dirac magneto-plasmons in topological
insulator nanowires. We discuss a cylindrical geometry where Berry phase
effects induce the opening of a gap at the neutrality point. By taking into
account surface electron wave functions introduced in previous papers and
within the random phase approximation, we provide an analytical form of the
dynamic structure factor. Dispersions and spectral weights of Dirac plasmons
are studied with varying the radius of the cylinder, the surface doping, and
the strength of an external magnetic field. We show that, at zero surface
doping, inter-band damped plasmon-like excitations form at the surface and
survive at low electron surface dopings (). Then, we
point out that the plasmon excitations are sensitive to the Berry phase gap
closure when an external magnetic field close to half quantum flux is
introduced. Indeed, a well-defined magneto-plasmon peak is observed at lower
energies upon the application of the magnetic field. Finally, the increase of
the surface doping induces a crossover from damped inter-band to sharp
intra-band magneto-plasmons which, as expected for large radii and dopings
(), approach the proper limit of a two-dimensional
surface.Comment: 18 pages, 11 figures, 2 Appendice
Noise-assisted Thouless pump in elastically deformable molecular junctions
We study a Thouless pump realized with an elastically \textit{deformable
quantum dot} whose center of mass follows a non-linear stochastic dynamics. The
interplay of noise, non-linear effects, dissipation and interaction with an
external time-dependent driving on the pumped charge is fully analyzed. The
results show that the quantum pumping mechanism not only is not destroyed by
the force fluctuations, but it becomes stronger when the forcing signal
frequency is tuned close to the resonance of the vibrational mode. The
robustness of the quantum pump with temperature is also investigated and an
exponential decay of the pumped charge is found when the coupling to the
vibrational mode is present. Implications of our results for
nano-electromechanical systems are also discussed.Comment: 2 Appendices and figures adde
- …
