3,235 research outputs found

    Are there biological differences between screen-detected and interval colorectal cancers in the English Bowel Cancer Screening Programme?

    Get PDF
    Background: We measured biomarkers of tumour growth and vascularity in interval and screen-detected colorectal cancers (CRCs) in the English Bowel Cancer Screening Programme in order to determine whether rapid tumour growth might contribute to interval CRC (a CRC diagnosed between a negative guaiac stool test and the next scheduled screening episode). Methods: Formalin-fixed, paraffin-embedded sections from 71 CRCs (screen-detected 43, interval 28) underwent immunohistochemistry for CD31 and Ki-67, in order to measure the microvessel density (MVD) and proliferation index (PI), respectively, as well as microsatellite instability (MSI) testing. Results: Interval CRCs were larger (P=0.02) and were more likely to exhibit venous invasion (P=0.005) than screen-detected tumours. There was no significant difference in MVD or PI between interval and screen-detected CRCs. More interval CRCs displayed MSI-high (14%) compared with screen-detected tumours (5%). A significantly (P=0.005) higher proportion (51%) of screen-detected CRC resection specimens contained at least one polyp compared with interval CRC (18%) resections. Conclusions: We found no evidence of biological differences between interval and screen-detected CRCs, consistent with the low sensitivity of guaiac stool testing as the main driver of interval CRC. The contribution of synchronous adenomas to occult blood loss for screening requires further investigation

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors

    Full text link
    We construct an action for non-abelian 2-form in 6-dimensions. Our action consists of a non-abelian generalization of the abelian action of Perry and Schwarz for a single five-brane. It admits a self-duality equation on the field strength as the equation of motion. It has a modified 6d Lorentz symmetry. On dimensional reduction on a circle, our action gives the standard 5d Yang-Mills action plus higher order corrections. Based on these properties, we propose that our theory describes the gauge sector of multiple M5-branes in flat space.Comment: LaTeX, 26 pages. v2: improved discussion of Lorentz symmetry. ref added. v3: add comments in the discussion section on the inclusion of scalar fields and supersymmetry; title changed to a more suitable one; version published in JHE

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    The role of childhood social position in adult type 2 diabetes: Evidence from the English Longitudinal Study of Ageing

    Get PDF
    Copyright @ 2014 Pikhartova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: Socioeconomic circumstances in childhood and early adulthood may influence the later onset of chronic disease, although such research is limited for type 2 diabetes and its risk factors at the different stages of life. The main aim of the present study is to examine the role of childhood social position and later inflammatory markers and health behaviours in developing type 2 diabetes at older ages using a pathway analytic approach. Methods. Data on childhood and adult life circumstances of 2,994 men and 4,021 women from English Longitudinal Study of Ageing (ELSA) were used to evaluate their association with diabetes at age 50 years and more. The cases of diabetes were based on having increased blood levels of glycated haemoglobin and/or self-reported medication for diabetes and/or being diagnosed with type 2 diabetes. Father's job when ELSA participants were aged 14 years was used as the measure of childhood social position. Current social characteristics, health behaviours and inflammatory biomarkers were used as potential mediators in the statistical analysis to assess direct and indirect effects of childhood circumstances on diabetes in later life. Results: 12.6 per cent of participants were classified as having diabetes. A disadvantaged social position in childhood, as measured by father's manual occupation, was associated at conventional levels of statistical significance with an increased risk of type 2 diabetes in adulthood, both directly and indirectly through inflammation, adulthood social position and a risk score constructed from adult health behaviours including tobacco smoking and limited physical activity. The direct effect of childhood social position was reduced by mediation analysis (standardised coefficient decreased from 0.089 to 0.043) but remained statistically significant (p = 0.035). All three indirect pathways made a statistically significantly contribution to the overall effect of childhood social position on adulthood type 2 diabetes. Conclusions: Childhood social position influences adult diabetes directly and indirectly through inflammatory markers, adulthood social position and adult health behaviours. © 2014Pikhartova et al.; licensee BioMed Central Ltd.Economic and Social Research Council-funded International Centre for Life Course Studies in Society and Health (RES-596-28-0001)

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Perpetrating Cyber Dating Abuse: A Brief Report on the Role of Aggression, Romantic Jealousy and Gender

    Get PDF
    There is increasing evidence that the use of elec-tronic communication technology (ECT) is being integrated into romantic relationships, which can be used as a medium to control a romantic partner. Most research focuses on the vic-tims of cyber dating abuse, however, we focused on the factors that predict perpetration of cyber dating abuse. We explored whether aggression (verbal aggression, physical aggression, anger and hostility), romantic jealousy (emotional, cognitive and behavioral jealousy), and gender predicted perpetration of cyber dating abuse (n = 189). We found that hostility, behav-ioral jealousy and gender significantly predicted perpetration of cyber dating abuse. The findings of this study contribute to our understanding of the psychological factors that drive cyber dating abuse in romantic relationships

    The Sister-Chromatid Exchange Assay in Human Cells

    Get PDF
    The semiconservative nature of DNA replication allows the differential labeling of sister chromatids that isthe fundamental requirement to perform the sister-chromatid exchange (SCE) assay. SCE assay is apowerful technique to visually detect the physical exchange of DNA between sister chromatids. SCEscould result as a consequence of DNA damage repair by homologous recombination (HR) during DNAreplication. Here, we provide the detailed protocol to perform the SCE assay in cultured human cells. Cellsare exposed to the thymidine analog 5-bromo-20-deoxyuridine (BrdU) during two cell cycles, resulting inthe two sister chromatids having differential incorporation of the analog. After metaphase spreads prepara-tion and further processing, SCEs are nicely visualized under the microscope
    corecore