236 research outputs found

    Far infrared properties of the rare-earth scandate DyScO3

    Full text link
    We present reflectance measurements in the infrared region on a single crystal the rare earth scandate DyScO3. Measurements performed between room temperature and 10 K allow to determine the frequency of the infrared-active phonons, never investigated experimentally, and to get information on their temperature dependence. A comparison with the phonon peak frequency resulting from ab-initio computations is also provided. We finally report detailed data on the frequency dependence of the complex refractive index of DyScO3 in the terahertz region, which is important in the analysis of terahertz measurements on thin films deposited on DyScO3

    Spectral weight redistribution in (LaNiO3)n/(LaMnO3)2 superlattices from optical spectroscopy

    Full text link
    We have studied the optical properties of four (LaNiO3_3)n_n/(LaMnO3_3)2_2 superlattices (SL) (nn=2, 3, 4, 5) on SrTiO3_3 substrates. We have measured the reflectivity at temperatures from 20 K to 400 K, and extracted the optical conductivity through a fitting procedure based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing LaNiO3_3 thickness, the SLs undergo an insulator-to-metal transition (IMT) that is accompanied by the transfer of spectral weight from high to low frequency. The presence of a broad mid-infrared band, however, shows that the optical conductivity of the (LaNiO3_3)n_n/(LaMnO3_3)2_2 SLs is not a linear combination of the LaMnO3_3 and LaNiO3_3 conductivities. Our observations suggest that interfacial charge transfer leads to an IMT due to a change in valence at the Mn and Ni sites.Comment: Accepted for publication in Phys. Rev. Lett. 5 pages, 5 figure

    Infrared signature of the charge-density-wave gap in ZrTe3

    Get PDF
    Abstract.: The chain-like ZrTe3 compound undergoes a charge-density-wave (CDW) transition at TCDW=63K, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature (T) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap Δ(T) along the direction perpendicular to the chains is compatible for T<TCDW with the behavior of an order parameter within the mean-field Bardeen-Cooper-Schrieffer (BCS) theory. Δ(T) also persists well above TCDW, which emphasizes the role played by fluctuation effect

    Metallic ground state and glassy transport in single crystalline URh2_2Ge2_2: Enhancement of disorder effects in a strongly correlated electron system

    Get PDF
    We present a detailed study of the electronic transport properties on a single crystalline specimen of the moderately disordered heavy fermion system URh2_2Ge2_2. For this material, we find glassy electronic transport in a single crystalline compound. We derive the temperature dependence of the electrical conductivity and establish metallicity by means of optical conductivity and Hall effect measurements. The overall behavior of the electronic transport properties closely resembles that of metallic glasses, with at low temperatures an additional minor spin disorder contribution. We argue that this glassy electronic behavior in a crystalline compound reflects the enhancement of disorder effects as consequence of strong electronic correlations.Comment: 5 pages, 4 figures, accepted for publication in PR

    Optical investigation of the metal-insulator transition in FeSb2

    Get PDF
    Abstract.: We present a comprehensive optical study of the narrow gap FeSb2 semiconductor. From the optical reflectivity, measured from the far infrared up to the ultraviolet spectral range, we extract the complete absorption spectrum, represented by the real part σ1(ω) of the complex optical conductivity. With decreasing temperature below 80K, we find a progressive depletion of σ1(ω) below Eg∼300 cm-1, the semiconducting optical gap. The suppressed (Drude) spectral weight within the gap is transferred at energies ω>Eg and also partially piles up over a continuum of excitations extending in the spectral range between zero and Eg. Moreover, the interaction of one phonon mode with this continuum leads to an asymmetric phonon shape. Even though several analogies between FeSb2 and FeSi were claimed and a Kondo-insulator scenario was also invoked for both systems, our data on FeSb2 differ in several aspects from those of FeSi. The relevance of our findings with respect to the Kondo insulator description will be addresse

    Vibrational spectrum of solid picene (C_22H_14)

    Full text link
    Recently, Mitsuhashi et al., have observed superconductivity with transition temperature up to 18 K in potassium doped picene (C22H14), a polycyclic aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis indicate the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab-initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unanbiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples

    Magneto-optical evidence of double exchange in a percolating lattice

    Full text link
    Substituting EuEu by CaCa in ferromagnetic EuB6EuB_6 leads to a percolation limited magnetic ordering. We present and discuss magneto-optical data of the Eu1xCaxB6Eu_{1-x}Ca_{x}B_6 series, based on measurements of the reflectivity R(ω)R(\omega) from the far infrared up to the ultraviolet, as a function of temperature and magnetic field. Via the Kramers-Kronig transformation of R(ω)R(\omega) we extract the complete absorption spectra of samples with different values of xx. The change of the spectral weight in the Drude component by increasing the magnetic field agrees with a scenario based on the double exchange model, and suggests a crossover from a ferromagnetic metal to a ferromagnetic Anderson insulator upon increasing CaCa-content at low temperatures.Comment: 10 pages, 3 figure

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB

    Optical evidence for a spin-filter effect in the charge transport of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6} as a function of temperature between 1.5 and 300 KK and in external magnetic fields up to 7 TT. The slope at the onset of the plasma edge feature in R(ω)R(\omega) increases with decreasing temperature and increasing field but the plasma edge itself does not exhibit the remarkable blue shift that is observed in the binary compound EuB6EuB_{6}. The analysis of the magnetic field dependence of the low temperature optical conductivity spectrum confirms the previously observed exponential decrease of the electrical resistivity upon increasing, field-induced bulk magnetization at constant temperature. In addition, the individual exponential magnetization dependences of the plasma frequency and scattering rate are extracted from the optical data.Comment: submitted to Phys. Rev. Let
    corecore