84 research outputs found
A quasi-cyclic RNA nano-scale molecular object constructed using kink turns
k-Turns are widespread RNA architectural elements that mediate tertiary interactions. We describe a double-kink-turn motif comprising two inverted k-turns that forms a tight horse-shoe structure that can assemble into a variety of shapes by coaxial association of helical ends. Using X-ray crystallography we show that these assemble with two (dumbell), three (triangle) and four units (square), with or without bound protein, within the crystal lattice. In addition, exchange of a single basepair can almost double the pore radius or shape of a molecular assembly. On the basis of this analysis we synthesized a 114 nt self-complementary RNA containing six k-turns. The crystal structure of this species shows that it forms a quasi-cyclic triangular object. These are randomly disposed about the three-fold axis in the crystal lattice, generating a circular RNA of quasi D (3) symmetry with a shape reminiscent of that of a cyclohexane molecule in its chair conformation. This work demonstrates that the k-turn is a powerful building block in the construction of nano-scale molecular objects, and illustrates why k-turns are widely used in natural RNA molecules to organize long-range architecture and mediate tertiary contacts
A critical base pair in k-turns that confers folding characteristics and correlates with biological function
Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n=G or 3b=C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg(2+)-induced folding in solution. While SAM-I riboswitches have 3b·3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value
Access to Organometallic Arylcobaltcorrins through Radical Synthesis: 4‐Ethylphenylcobalamin, a Potential “Antivitamin B 12 ”
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96761/1/anie_201209651_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96761/2/2606_ftp.pd
Zugang zu metallorganischen Arylcobaltcorrinen durch radikalische Synthese: 4‐Ethylphenylcobalamin, ein potenzielles “Antivitamin B 12 ”
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96656/1/2668_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96656/2/ange_201209651_sm_miscellaneous_information.pd
RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.:
This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/
"MY HEART IS A SPRING, MY SONG IS A WAVE ...": WATER ELEMENT IN THE POETRY OF YA.P. POLONSKY
Cooperativity, allostery and synergism in ligand binding to riboswitches
Recent progress in identification and characterization of novel types of non-coding RNAs has proven that RNAs carry out a variety of cellular functions ranging from scaffolding to gene expression control. In both prokaryotic and eukaryotic cells, several classes of non-coding RNAs control expression of dozens of genes in response to specific cues. One of the most interesting and outstanding questions in the RNA field is whether regulatory RNAs are capable of employing basic biological concepts, such as allostery and cooperativity, previously attributed to the function of proteins. Aside from regulatory RNAs that form complementary base pairing with their nucleic acid targets, several RNA classes modulate gene expression via molecular mechanisms which can be paralleled to protein-mediated regulation. Among these RNAs are riboswitches, metabolite-sensing non-coding regulatory elements that adopt intrinsic three-dimensional structures and specifically bind various small molecule ligands. These characteristics of riboswitches make them well-suited for complex regulatory responses observed in allosteric and cooperative protein systems. Here we present an overview of the biochemical, genetic, and structural studies of riboswitches with a major focus on complex regulatory mechanisms and biological principles utilized by riboswitches for such genetic modulation
- …
