520 research outputs found

    First results of the air shower experiment KASCADE

    Full text link
    The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector) experiment are the determination of the energy spectrum and elemental composition of the charged cosmic rays in the energy range around the knee at ca. 5 PeV. Due to the large number of measured observables per single shower a variety of different approaches are applied to the data, preferably on an event-by-event basis. First results are presented and the influence of the high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings, Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D. Vignau

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons

    Full text link
    The flux of cosmic-ray induced single hadrons near sea level has been measured with the large hadron calorimeter of the KASCADE experiment. The measurement corroborates former results obtained with detectors of smaller size if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be described with a power law parametrized as dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV region the proton flux compares well with the results from recent measurements of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa

    KCDC - The KASCADE Cosmic-ray Data Centre

    Get PDF
    KCDC, the KASCADE Cosmic-ray Data Centre, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.Comment: 8 pages, accepted proceeding of the ECRS-symposium, Kiel, 201

    The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    Get PDF
    The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.Comment: accepted by Astroparticle Physics June 201
    corecore