82 research outputs found

    Effect of clamping force on distortion of the optical surface of monochromators during assembly

    Get PDF
    As Diamond Light Source embraces the move towards becoming a fourth-generation light source its optics will be required to perform under increasingly demanding conditions. Foremost amongst these conditions will be the increasing power densities the optics are subjected to and the reducing real estate they have to perform in. With these new challenges comes the need for greater understanding of how optics are assembled and how consistently the activity is carried out. In this paper, the effect of bolt pretension during assembly of monochromators on distortion of the optical surface is investigated through numerical simulation. The results reveal skewed convex distortion of the optical surface in the meridional direction when uneven clamping force is applied, highlighting the importance of taking the potential for distortion of the optical surface due to clamping force into consideration

    Beyond the Langevin horn: transducer arrays for the acoustic levitation of liquid drops

    Get PDF
    The acoustic levitation of liquid drops has been a key phenomenon for more than 40 years, driven partly by the ability to mimic a microgravity environment. It has seen more than 700 research articles published in this time and has seen a recent resurgence in the past 5 years, thanks to low cost developments. As well as investigating the basic physics of levitated drops, acoustic levitation has been touted for container free delivery of samples to a variety of measurements systems, most notably in various spectroscopy techniques including Raman and Fourier transform infrared in addition to numerous X-ray techniques. For 30 years, the workhorse of the acoustic levitation apparatus was a stack comprising a piezoelectric transducer coupled to a horn shaped radiative element often referred to as the Langevin horn. Decades of effort have been dedicated to such devices, paired with a matching and opposing device or a reflector, but they have a significant dependence on temperature and require precision alignment. The last decade has seen a significant shift away from these in favor of arrays of digitally driven, inexpensive transducers, giving a new dynamic to the topic which we review herein
    corecore