163 research outputs found

    Impact of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial

    Get PDF
    Background: Meningococcal conjugate vaccines protect individuals directly, but also confer herd protection by interrupting carriage transmission. This Phase III observer-blind, randomised, controlled study evaluated the effects of meningococcal quadrivalent (ACWY) glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in young adults. Methods: University students (aged 18–24 years) from ten sites in England were randomised to receive two vaccinations one month apart: two doses of Japanese Encephalitis vaccine (controls), two doses of 4CMenB (4CMenB), or one dose of MenACWY-CRM then placebo (MenACWY-CRM). Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over one year. Primary analysis was cross-sectional carriage one month after the vaccine course; secondary analyses included comparison of carriage at any time point after primary analysis until study termination. Findings: 2954 subjects were randomised (control, n=987; 4CMenB, n=988; MenACWY-CRM, n=979); approximately one-third of each group was positive for meningococcal carriage at study entry. By one month, there was no significant difference in carriage between controls and 4CMenB (Odds Ratios (OR) [95% CI]; 1·2 [0·8−1·7]) or MenACWY-CRM (OR [95% CI], 0·9 [0·6–1·3]) groups. From three months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (calculated efficacy 18·2% [95% CI: 3·4–30·8]) and capsular groups BCWY (calculated efficacy 26·6% [95% CI: 10·5–39·9]) compared to control vaccination. Significantly lower carriage rates were also observed in the MenACWY-CRM group compared with controls: calculated efficacies 39·0% [95%CI: 17·3-55·0] and 36.2% [95%CI: 15·6-51·7] for serogroups Y and CWY, respectively. Interpretation: MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates over 12 months post-vaccination and, therefore, may affect transmission where widely implemented

    STXBP1 promotes Weibel-Palade body exocytosis through its interaction with the Rab27A effector Slp4-a.

    Get PDF
    Vascular endothelial cells contain unique rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs), which contain the hemostatic protein von Willebrand factor (VWF) and a cocktail of angiogenic and inflammatory mediators. We have shown that the Rab27A effector synaptotagmin-like protein 4-a (Slp4-a) plays a critical role in regulating hormone-evoked WPB exocytosis. Using a nonbiased proteomic screen for targets for Slp4-a, we now identify syntaxin-binding protein 1 (STXBP1) and syntaxin-2 and -3 as endogenous Slp4-a binding partners in endothelial cells. Coimmunoprecipitations showed that STXBP1 interacts with syntaxin-2 and -3, but not with syntaxin-4. Small interfering RNA-mediated silencing of STXBP1 expression impaired histamine- and forskolin-induced VWF secretion. To further substantiate the role of STXBP1, we isolated blood outgrowth endothelial cells (BOECs) from an early infantile epileptic encephalopathy type 4 (EIEE4) patient carrying a de novo mutation in STXBP1. STXBP1-haploinsufficient EIEE4 BOECs contained similar numbers of morphologically normal WPBs compared with control BOECs of healthy donors; however, EIEE4 BOECs displayed significantly impaired histamine- and forskolin-stimulated VWF secretion. Based on these findings, we propose that the Rab27A-Slp4-a complex on WPB promotes exocytosis through an interaction with STXBP1, thereby controlling the release of vaso-active substances in the vasculature

    A multi-component meningococcal serogroup B vaccine (4CMenB): the clinical development program

    Get PDF
    Articulo de publicación ISIRecently approved in Europe and Australia, the multi-component meningococcal B vaccine, 4CMenB (Bexsero , Novartis Vaccines and Diagnostics), contains three surface-exposed recombinant proteins (fHbp, NadA, and NHBA) and New Zealand strain outer membrane vesicles (NZ OMV) with PorA 1.4 antigenicity. This comprehensive review of the 4CMenB clinical development program covers pivotal phase I/IIb/III studies in over 7,000 adults, adolescents, and infants. The immunological correlate for clinical protection used was human complement- mediated serum bactericidal activity titers C4 or 5 against indicator strains for individual antigens. Based on achievement of protective titers, a four-dose schedule (three primary doses and one booster dose) for infants and a two-dose schedule for adolescents provided the best results. Observed increases in injection site pain/tenderness and fever in infants, and injection site pain, malaise, and headache in adolescents compared with routine vaccines, were mostly mild to moderate; frequencies of rare events (Kawasaki disease, juvenile arthritis) were not significantly different from non-vaccinated individuals. 4CMenB is conservatively estimated to provide 66–91 % coverage against meningococcal serogroup B strains worldwide

    Moving fast but going slow: coordination challenges for trials of COVID-19 post-exposure prophylaxis

    Get PDF
    An unprecedented volume of research has been generated in response to the COVID-19 pandemic. However, there are risks of inefficient duplication and of important work being impeded if efforts are not synchronized. Excessive reliance on observational studies, which can be more rapidly conducted but are inevitably subject to measured and unmeasured confounders, can foil efforts to conduct rigorous randomized trials. These challenges are illustrated by recent global efforts to conduct clinical trials of post-exposure prophylaxis (PEP) as a strategy for preventing COVID-19. Innovative strategies are needed to help overcome these issues, including increasing communication between the Data Safety and Monitoring Committees (DSMCs) of similar trials. It is important to reinforce the primacy of high-quality trials in generating unbiased answers to pressing prevention and treatment questions about COVID-19

    Onchocerciasis transmission in Ghana: Persistence under different control strategies and the role of the simuliid vectors

    Get PDF
    Background: The World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in selected African countries. Current control focuses on community-directed treatment with ivermectin (CDTI). In Ghana, persistent transmission has been reported despite long-term control. We present spatial and temporal patterns of onchocerciasis transmission in relation to ivermectin treatment history. Methodology/Principal Findings: Host-seeking and ovipositing blackflies were collected from seven villages in four regions of Ghana with 3–24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces of 12,196 flies were dissected for Onchocerca spp. and DNA from 11,122 abdomens was amplified using Onchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) infected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovipositing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Bosomase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3 and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100times the WHO threshold of one L3/1,000 for transmission control. Vector species influenced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4, 95% CI = 0–4) also just exceeded the threshold despite extensive vector control and 24 years of ivermectin distribution, but there were no infective larvae in host-seeking flies. Conclusions/Significance: Despite repeated ivermectin treatment, evidence of O. volvulus transmission was documented in all seven villages and above the WHO threshold in two. Vector species influences transmission through biting and parous rates and vector competence, and should be included in transmission models. Oviposition traps could augment vector collector methods for monitoring and surveillance

    Bacillus anthracis Aerosolization Associated with a Contaminated Mail Sorting Machine

    Get PDF
    On October 12, 2001, two envelopes containing Bacillus anthracis spores passed through a sorting machine in a postal facility in Washington, D.C. When anthrax infection was identified in postal workers 9 days later, the facility was closed. To determine if exposure to airborne B. anthracis spores continued to occur, we performed air sampling around the contaminated sorter. One CFU of B. anthracis was isolated from 990 L of air sampled before the machine was activated. Six CFUs were isolated during machine activation and processing of clean dummy mail. These data indicate that an employee working near this machine might inhale approximately 30 B. anthracis-containing particles during an 8-h work shift. What risk this may have represented to postal workers is not known, but the risk is approximately 20-fold less than estimates of sub-5 micron B. anthracis-containing particles routinely inhaled by asymptomatic, unvaccinated workers in a goat-hair mill

    First Case of Bioterrorism-Related Inhalational Anthrax in the United States, Palm Beach County, Florida, 2001

    Get PDF
    On October 4, 2001, we confirmed the first bioterrorism-related anthrax case identified in the United States in a resident of Palm Beach County, Florida. Epidemiologic investigation indicated that exposure occurred at the workplace through intentionally contaminated mail. One additional case of inhalational anthrax was identified from the index patient’s workplace. Among 1,076 nasal cultures performed to assess exposure, Bacillus anthracis was isolated from a co-worker later confirmed as being infected, as well as from an asymptomatic mail-handler in the same workplace. Environmental cultures for B. anthracis showed contamination at the workplace and six county postal facilities. Environmental and nasal swab cultures were useful epidemiologic tools that helped direct the investigation towards the infection source and transmission vehicle. We identified 1,114 persons at risk and offered antimicrobial prophylaxis

    Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene transfer to the gastrointestinal (GI) mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD), GI infections, and cancer.</p> <p>Methods</p> <p>We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G)-pseudotyped lentiviral vectors (LV) for efficacy of gene transfer to both murine rectosigmoid colon <it>in vivo </it>and human colon explants <it>ex vivo</it>. LV encoding beta-galactosidase (LV-β-Gal) or firefly-luciferase (LV-fLuc) reporter genes were administered by intrarectal instillation in mice, or applied topically for <it>ex vivo </it>transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by <it>ex vivo </it>bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining.</p> <p>Results</p> <p>Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP.</p> <p>Conclusions</p> <p>We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.</p

    Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model after In Vivo Selection

    Get PDF
    Background: There is currently no effective AIDS vaccine, emphasizing the importance of developing alternative therapies. Recently, a patient was successfully transplanted with allogeneic, naturally resistant CCR5-negative (CCR5 delta 32) cells, setting the stage for transplantation of naturally resistant, or genetically modified stem cells as a viable therapy for AIDS. Hematopoietic stem cell (HSC) gene therapy using vectors that express various anti-HIV transgenes has also been attempted in clinical trials, but inefficient gene transfer in these studies has severely limited the potential of this approach. Here we evaluated HSC gene transfer of an anti-HIV vector in the pigtailed macaque (Macaca nemestrina) model, which closely models human transplantation. Methods and Findings: We used lentiviral vectors that inhibited both HIV-1 and simian immunodeficiency virus (SIV)/HIV-1 (SHIV) chimera virus infection, and also expressed a P140K mutant methylguanine methyltransferase (MGMT) transgene to select gene-modified cells by adding chemotherapy drugs. Following transplantation and MGMT-mediated selection we demonstrated transgene expression in over 7% of stem-cell derived lymphocytes. The high marking levels allowed us to demonstrate protection from SHIV in lymphocytes derived from gene-modified macaque long-term repopulating cells that expressed an HIV-1 fusion inhibitor. We observed a statistically significant 4-fold increase of gene-modified cells after challenge of lymphocytes from one macaque that received stem cells transduced with an anti-HIV vector (p<0.02, Student's t-test), but not in lymphocytes from a macaque that received a control vector. We also established a competitive repopulation assay in a second macaque for preclinical testing of promising anti-HIV vectors. The vectors we used were HIV-based and thus efficiently transduce human cells, and the transgenes we used target HIV-1 genes that are also in SHIV, so our findings can be rapidly translated to the clinic. Conclusions: Here we demonstrate the ability to select protected HSC-derived lymphocytes in vivo in a clinically relevant nonhuman primate model of HIV/SHIV infection. This approach can now be evaluated in human clinical trials in AIDS lymphoma patients. In this patient setting, chemotherapy would not only kill malignant cells, but would also increase the number of MGMTP140K-expressing HIV-resistant cells. This approach should allow for high levels of HIV-protected cells in AIDS patients to evaluate AIDS gene therapy
    corecore