11 research outputs found
Peroxisome biogenesis in Hansenula polymorpha: different mutations in genes, essential for peroxisome biogenesis, cause different peroxisomal mutant phenotypes
In Hansenula polymorpha, different monogenic recessive mutations mapped in either of two previously identified genes, PER1 and PER3, produced different peroxisomal mutant phenotypes. Among five per1 mutants, four showed a Pim- phenotype: the cells contained few small peroxisomes while the bulk of the matrix enzymes resided in the cytosol. One of these mutants, per1-124 had an enhanced rate of peroxisome proliferation. The fifth mutant completely lacked peroxisomes (Per- phenotype). Of seven per3 mutants, four displayed a Pim- phenotype, two others a Per- phenotype, while one mutant showed pH-dependent growth on methanol and was affected in oligomerization of peroxisomal matrix protein. Thus, the protein products of both PER1 and PER3 genes appear to be essential in different aspects of peroxisome assembly/proliferation.
The Neurospora mitochondrial genome: the region coding for the polycistronic cytochrome oxidase subunit I transcript is preceded by a transfer RNA gene
AbstractWe have sequenced a 682 bp fragment of Neurospora crassa mitochondrial DNA to complete the sequence between the gene for cytochrome b and the unassigned reading frame, URF U. The sequence contains a gene for a cysteine tRNA. The 5' end of the 6 kb polycistronic transcript of cytochrome c oxidase subunit 1 is immediately downstream from this tRNA. This shows that also in fungal mitochondria tRNAs can be used as processing signals, whereas palindromic sequences containing double Pst I sites, also present in this region, are not used for processing
The Hansenula polymorpha PER1 Gene Is Essential for Peroxisome Biogenesis and Encodes a Peroxisomal Matrix Protein with Both Carboxy- and Amino-terminal Targeting Signals
We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequence similarity to other known proteins. PER1 expression was low but significant in wild-type H. polymorpha growing on glucose and increased during growth on any one of a number of substrates which induce peroxisome proliferation. PER1p contains both a carboxy- (PTS1) and an amino-terminal (PTS2) peroxisomal targeting signal which both were demonstrated to be capable of directing bacterial β-lactamase to the organelle. In wild-type H. polymorpha PER1p is a protein of low abundance which was demonstrated to be localized in the peroxisomal matrix. Our results suggest that the import of PER1p into peroxisomes is a prerequisite for the import of additional matrix proteins and we suggest a regulatory function of PER1p on peroxisomal protein import.
Characterization of peroxisome-deficient mutants of Hansenula polymorpha
In the methylotrophic yeast Hansenula polymorpha, approximately 25% of all methanol-utilization-defective (Mut-) mutants are affected in genes required for peroxisome biogenesis (PER genes). Previously, we reported that one group of per mutants, termed Pim-, are characterized by the presence of a few small peroxisomes with the bulk of peroxisomal enzymes located in the cytosol. Here, we describe a second major group of per mutants that were observed to be devoid of any peroxisome-like structure (Per-). In each Per- mutant, the peroxisomal methanol-pathway enzymes alcohol oxidase, catalase and dihydroxyacetone synthase were present and active but located in the cytosol. Together, the Pim- and Per- mutant collections involved mutations in 14 different PER genes. Two of the genes, PER5 and PER7, were represented by both dominant-negative and recessive alleles. Diploids resulting from crosses of dominant per strains and wild-type H. polymorpha were Mut- and harbored peroxisomes with abnormal morphology. This is the first report of dominant-negative mutations affecting peroxisome biogenesis.
