1,235 research outputs found

    Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks

    Full text link
    This paper presents to the best of our knowledge the first end-to-end object tracking approach which directly maps from raw sensor input to object tracks in sensor space without requiring any feature engineering or system identification in the form of plant or sensor models. Specifically, our system accepts a stream of raw sensor data at one end and, in real-time, produces an estimate of the entire environment state at the output including even occluded objects. We achieve this by framing the problem as a deep learning task and exploit sequence models in the form of recurrent neural networks to learn a mapping from sensor measurements to object tracks. In particular, we propose a learning method based on a form of input dropout which allows learning in an unsupervised manner, only based on raw, occluded sensor data without access to ground-truth annotations. We demonstrate our approach using a synthetic dataset designed to mimic the task of tracking objects in 2D laser data -- as commonly encountered in robotics applications -- and show that it learns to track many dynamic objects despite occlusions and the presence of sensor noise.Comment: Published in The Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Video: https://youtu.be/cdeWCpfUGWc, Code: http://mrg.robots.ox.ac.uk/mrg_people/peter-ondruska

    Trellis-Based Equalization for Sparse ISI Channels Revisited

    Full text link
    Sparse intersymbol-interference (ISI) channels are encountered in a variety of high-data-rate communication systems. Such channels have a large channel memory length, but only a small number of significant channel coefficients. In this paper, trellis-based equalization of sparse ISI channels is revisited. Due to the large channel memory length, the complexity of maximum-likelihood detection, e.g., by means of the Viterbi algorithm (VA), is normally prohibitive. In the first part of the paper, a unified framework based on factor graphs is presented for complexity reduction without loss of optimality. In this new context, two known reduced-complexity algorithms for sparse ISI channels are recapitulated: The multi-trellis VA (M-VA) and the parallel-trellis VA (P-VA). It is shown that the M-VA, although claimed, does not lead to a reduced computational complexity. The P-VA, on the other hand, leads to a significant complexity reduction, but can only be applied for a certain class of sparse channels. In the second part of the paper, a unified approach is investigated to tackle general sparse channels: It is shown that the use of a linear filter at the receiver renders the application of standard reduced-state trellis-based equalizer algorithms feasible, without significant loss of optimality. Numerical results verify the efficiency of the proposed receiver structure.Comment: To be presented at the 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), September 4-9, 2005, Adelaide, Australi

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19
    corecore