8 research outputs found
Fluctuations in spo0A Transcription Control Rare Developmental Transitions in Bacillus subtilis
Phosphorylated Spo0A is a master regulator of stationary phase development in the model bacterium Bacillus subtilis, controlling the formation of spores, biofilms, and cells competent for transformation. We have monitored the rate of transcription of the spo0A gene during growth in sporulation medium using promoter fusions to firefly luciferase. This rate increases sharply during transient diauxie-like pauses in growth rate and then declines as growth resumes. In contrast, the rate of transcription of an rRNA gene decreases and increases in parallel with the growth rate, as expected for stable RNA synthesis. The growth pause-dependent bursts of spo0A transcription, which reflect the activity of the spo0A vegetative promoter, are largely independent of all known regulators of spo0A transcription. Evidence is offered in support of a “passive regulation” model in which RNA polymerase stops transcribing rRNA genes during growth pauses, thus becoming available for the transcription of spo0A. We show that the bursts are followed by the production of phosphorylated Spo0A, and we propose that they represent initial responses to stress that bring the average cell closer to the thresholds for transition to bimodally expressed developmental responses. Measurement of the numbers of cells expressing a competence marker before and after the bursts supports this hypothesis. In the absence of ppGpp, the increase in spo0A transcription that accompanies the entrance to stationary phase is delayed and sporulation is markedly diminished. In spite of this, our data contradicts the hypothesis that sporulation is initiated when a ppGpp-induced depression of the GTP pool relieves repression by CodY. We suggest that, while the programmed induction of sporulation that occurs in stationary phase is apparently provoked by increased flux through the phosphorelay, bet-hedging stochastic transitions to at least competence are induced by bursts in transcription
MinCD Proteins Control the Septation Process during Sporulation of <i>Bacillus subtilis</i>
ABSTRACT
Mutation of the
divIVB
locus in
Bacillus subtilis
causes misplacement of the septum during cell division and allows the formation of anucleate minicells. The
divIVB
locus contains five open reading frames (ORFs). The last two ORFs (
minCD
) are homologous to
minC
and
minD
of
Escherichia coli
but a
minE
homolog is lacking in
B. subtilis
. There is some similarity between minicell formation and the asymmetric septation that normally occurs during sporulation in terms of polar septum localization. However, it has been proposed that MinCD has no essential role in sporulation septum formation. We have used electron microscopic studies to show septation events during sporulation in some
minD
strains. We have observed an unusually thin septum at the midcell position in
minD
and also in
minD spoIIE71
mutant cells. Fluorescence microscopy also localized a SpoIIE-green fluorescent protein fusion protein at the midcell site in
minD
cells. We propose that the MinCD complex plays an important role in asymmetric septum formation during sporulation of
B. subtilis
cells.
</jats:p
Structural and Motional Contributions of the Bacillus subtilis ClpC N-Domain to Adaptor Protein Interactions
The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC
