179 research outputs found
Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities
Control of neuronal excitation-inhibition balance by BMP-SMAD1 signaling
Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition which is essential for neuronal computation. Deviations from a balanced state have been linked to neurodevelopmental disorders and severe disruptions result in epilepsy. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here, we identified a signaling pathway in the adult mouse neocortex that is activated in response to elevated neuronal network activity. Over-activation of excitatory neurons is signaled to the network through the elevation of BMP2, a growth factor well-known for its role as morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of peri-neuronal nets. PV interneuron-specific impairment of BMP2-SMAD1 signaling is accompanied by a loss of PV cell glutamatergic innervation, underdeveloped peri-neuronal nets, and decreased excitability. Ultimately, this impairment of PV interneuron functional recruitment disrupts cortical excitation - inhibition balance with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signaling is re-purposed to stabilize cortical networks in the adult mammalian brain
Development of Axon-Target Specificity of Ponto-Cerebellar Afferents
The function of neuronal networks relies on selective assembly of synaptic connections during development. We examined how synaptic specificity emerges in the pontocerebellar projection. Analysis of axon-target interactions with correlated light-electron microscopy revealed that developing pontine mossy fibers elaborate extensive cell-cell contacts and synaptic connections with Purkinje cells, an inappropriate target. Subsequently, mossy fiber–Purkinje cell connections are eliminated resulting in granule cell-specific mossy fiber connectivity as observed in mature cerebellar circuits. Formation of mossy fiber-Purkinje cell contacts is negatively regulated by Purkinje cell-derived BMP4. BMP4 limits mossy fiber growth in vitro and Purkinje cell-specific ablation of BMP4 in mice results in exuberant mossy fiber–Purkinje cell interactions. These findings demonstrate that synaptic specificity in the pontocerebellar projection is achieved through a stepwise mechanism that entails transient innervation of Purkinje cells, followed by synapse elimination. Moreover, this work establishes BMP4 as a retrograde signal that regulates the axon-target interactions during development
Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders
Most nervous system disorders manifest through alterations in neuronal signaling based on abnormalities in neuronal excitability, synaptic transmission, and cell survival. However, such neuronal phenotypes are frequently accompanied – or even caused – by metabolic dysfunctions in neuronal or non-neuronal cells. The tight packing and highly heterogenous properties of neural, glial and vascular cell types pose significant challenges to dissecting metabolic aspects of brain disorders. Perturbed cholesterol homeostasis has recently emerged as key parameter associated with sub-sets of neurodevelopmental disorders. However, approaches for tracking and visualizing endogenous cholesterol distribution in the brain have limited capability of resolving cell type-specific differences. We here develop tools for genetically-encoded sensors that report on cholesterol distribution in the mouse brain with cellular resolution. We apply these probes to examine sub-cellular cholesterol accumulation in two genetic mouse models of neurodevelopmental disorders, Npc1 and Ptchd1 knock-out mice. While both genes encode proteins with sterol-sensing domains that have been implicated in cholesterol transport, we uncover highly selective and cell type-specific phenotypes in cholesterol homeostasis. The tools established in this work should facilitate probing sub-cellular cholesterol distribution in complex tissues like the mammalian brain and enable capturing cell type-specific alterations in cholesterol flow between cells in models of brain disorders
Trans-cellular control of synapse properties by a cell type-specific splicing regulator
The recognition of synaptic partners and specification of synaptic properties are fundamental for the function of neuronal circuits. ‘Terminal selector’ transcription factors coordinate the expression of terminal gene batteries that specify cell type-specific properties. Moreover, pan-neuronal alternative splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell type-specific loss-of-function studies to uncover the contribution of the nuclear RNA binding protein SLM2 to hippocampal synapse specification. Focusing on hippocampal pyramidal cells and SST-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins, thereby generating cell type-specific isoforms. In the absence of SLM2, cell type-specification, differentiation, and viability are unaltered and neuronal populations exhibit normal intrinsic properties. By contrast, cell type-specific loss of SLM2 results in highly selective, non-cell autonomous synaptic phenotypes, altered synaptic transmission, and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner
A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner
The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner
Rescue of oxytocin response and social behaviour in a mouse model of autism
A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1,2,3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4,5,6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions
Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release.
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants
Facilitation of AMPA Receptor Synaptic Delivery as a Molecular Mechanism for Cognitive Enhancement
A small peptide from a neuronal cell adhesion molecule enhances synaptic plasticity in the hippocampus and results in improved cognitive performance in rats
An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7Fbxw8 localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7Fbxw8 by independent approaches including Fbxw8 knockdown reveals that Cul7Fbxw8 is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7Fbxw8 also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7Fbxw8 in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7Fbxw8 in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7Fbxw8 ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development
- …
