34 research outputs found

    Exploring Rifamycin Inactivation from the Soil Microbiome

    Get PDF
    Our battle against pathogens has become a challenge due to the rise in antibiotic resistance and the dwindling number of new antibiotics entering the clinic. Most antibiotics owe their origins to soil bacteria, which have been producing these natural products for millennia. The rifamycins are products of actinomycetes and semisynthetic derivatives of these have been very successful in the clinic. Rifampin (RIF) has been a cornerstone agent against tuberculosis for over 50 years. In the clinic, pathogens typically develop RIF resistance by mutation of the drug. Nonetheless, a number of diverse RIF resistance mechanisms have been described, including enzymatic inactivation. Environmental bacteria are multidrug resistant, likely due to sharing the same niche as antibiotic producers and represent a reservoir of ancient resistance determinants. Furthermore, these resistance determinants have been linked to pathogens. Exploring the antibiotic resistome, the collection of all antibiotic resistance determinants from the global microbiota, reveals the diversity and evolution of resistance and provides insight on vulnerabilities of our current antibiotics. Herein, I describe a diverse collection of RIF-inactivating mechanisms from soil actinomycetes. I identified heretofore unknown RIF glycosyltransferase and RIF phosphotransferase genes (rgt and rph, respectively). RGT and RPH enzymes display broad rifamycin specificity and contribute to high-level resistance. Interestingly, RIF-sensitive Gram-positive pathogens are carriers of RPH, highlighting the existence of a ‘silent’ resistome in clinically relevant bacteria and emphasize the importance of studying resistance from environmental bacteria. Furthermore, I identified a conserved upstream DNA motif associated with RIF-inactivating genes from actinomycetes and demonstrate its role in RIF-responsive gene regulation. Finally, I explore the use of a RIF-resistance guided approach to identify novel rifamycin producing bacteria. This study expands the rifamycin resistome, provides evidence of vulnerabilities of our current arsenal of rifamycin antibiotics, and offers a strategy to identify new members of this family natural product family.ThesisDoctor of Science (PhD

    Mirror, mirror on the wall: which microbiomes will help heal them all?

    Get PDF
    BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications—some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease. DISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual’s microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. SUMMARY: We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities

    The tetracycline resistome

    Full text link

    A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria

    Full text link
    Significance Environmental microorganisms are a source of diverse antibiotic resistance determinants. With the appropriate selection pressure, these resistance genes can be mobilized to clinically relevant pathogens. Identifying and characterizing elements of the environmental antibiotic resistome provides an early warning of what we may expect to encounter in the clinic. We uncover a conserved genetic element associated with various rifamycin antibiotic-inactivating mechanisms. This element led to the identification of a new resistance gene and associated enzyme responsible for inactivating rifamycin antibiotics by phosphorylation. Cryptic orthologous genes are also found in pathogenic bacteria but remain susceptible to the drug. This study reveals a new antibiotic resistance protein family and the unexpected prevalence of a silent rifamycin resistome among pathogenic bacteria.</jats:p
    corecore