1,056 research outputs found
Economic consequences of the Schengen agreement for labour markets within the Polish borderland regions
Time-of-Flight Based Calibration of an Ultrasonic Computed Tomography System
The paper presents a novel method for calibration of measuring geometry and of individual signal delays of transducers in ultrasonic computed tomography (USCT) systems via computational processing of multiple time-of-flight measurements of ultrasonic (US) impulses. The positions and time-delay parameters of thousands of ultrasonic transducers inside the USCT tank are calibrated by this approach with a high precision required for the tomographic reconstruction; such accuracy cannot be provided by any other known method. Although utilising similar basic principles as the global positioning system (GPS), the method is importantly generalised in treating all transducer parameters as the to-be calibrated (floating) unknowns, without any a-priori known positions and delays. The calibration is formulated as a non-linear least-squares problem, minimizing the differences between the calculated and measured time-of-arrivals of ultrasonic pulses. The paper provides detailed derivation of the method, and compares two implemented approaches (earlier calibration of individual transducers with the new approach calibrating rigid transducer arrays) via detailed simulations, aimed at testing the convergence properties and noise robustness of both approaches. Calibration using real US signals is described and, as an illustration of the utility of the presented method, a comparison is shown of two image reconstructions using the tomographic US data from a concrete experimental USCT system measuring a 3D phantom, without and after the calibration
Asynchronous haptic simulation of contacting deformable objects with variable stiffness
International audienceAbstract--This paper presents a new asynchronous approach for haptic rendering of deformable objects. When stiff nonlinear deformations take place, they introduce important and rapid variations of the force sent to the user. This problem is similar to the stiff virtual wall for which a high refresh rate is required to obtain a stable haptic feedback. However, when dealing with several interacting deformable objects, it is usually impossible to simulate all objects at high rates. To address this problem we propose a quasi-static framework that allows for stable interactions of asynchronously computed deformable objects. In the proposed approach, a deformable object can be computed at high refresh rates, while the remaining deformable virtual objects remain computed at low refresh rates. Moreover, contacts and other constraints between the different objects of the virtual environment are accurately solved using a shared Linear Complementarity Problem (LCP). Finally, we demonstrate our method on two test cases: a snap-in example involving non-linear deformations and a virtual thread interacting with a deformable object
Haptic Rendering Based on RBF Approximation from Dynamically Updated Data
In this paper, an extension of our previous research focused on haptic rendering based on interpolation from precomputed data is presented. The technique employs the radial-basis function (RBF) interpolation to achieve the accuracy of the force response approximation, however, it assumes that the data used by the interpolation method are generated on-the-fly during the haptic interaction. The issue caused by updating the RBF coefficients during the interaction is analyzed and a force-response smoothing strategy is proposed
Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C@SWCNT
High filling of single wall carbon nanotubes (SWCNT) with C and
C fullerenes in solvent is reported at temperatures as low as 69
C. A 2 hour long refluxing in n-hexane of the mixture of the fullerene
and SWCNT results in a high yield of C,C@SWCNT, fullerene peapod,
material. The peapod filling is characterized by TEM, Raman and electron energy
loss spectroscopy and X-ray scattering. We applied the method to synthesize the
temperature sensitive (N@C:C)@SWCNT as proved by electron spin
resonance spectroscopy. The solvent prepared peapod samples can be transformed
to double walled nanotubes enabling a high yield and industrially scalable
production of DWCNT
Constraint-Based Simulation for Non-Rigid Real-Time Registration
International audienceIn this paper we propose a method to address the problem of non-rigid registration in real-time. We use Lagrange multipliers and soft sliding constraints to combine data acquired from dynamic image sequence and a biomechanical model of the structure of interest. The biomechanical model plays a role of regulariza-tion to improve the robustness and the flexibility of the registration. We apply our method to a pre-operative 3D CT scan of a porcine liver that is registered to a sequence of 2D dynamic MRI slices during the respiratory motion. The finite element simulation provides a full 3D representation (including heterogeneities such as vessels, tumor,. . .) of the anatomical structure in real-time
Model-Based Identification of Anatomical Boundary Conditions in Living Tissues
International audienceIn this paper, we present a novel method dealing with the identification of boundary conditions of a deformable organ, a particularly important step for the creation of patient-specific biomechani-cal models of the anatomy. As an input, the method requires a set of scans acquired in different body positions. Using constraint-based finite element simulation, the method registers the two data sets by solving an optimization problem minimizing the energy of the deformable body while satisfying the constraints located on the surface of the registered organ. Once the equilibrium of the simulation is attained (i.e. the organ registration is computed), the surface forces needed to satisfy the constraints provide a reliable estimation of location, direction and magnitude of boundary conditions applied to the object in the deformed position. The method is evaluated on two abdominal CT scans of a pig acquired in flank and supine positions. We demonstrate that while computing a physically admissible registration of the liver, the resulting constraint forces applied to the surface of the liver strongly correlate with the location of the anatomical boundary conditions (such as contacts with bones and other organs) that are visually identified in the CT images
Towards an Accurate Tracking of Liver Tumors for Augmented Reality in Robotic Assisted Surgery
International audienceThis article introduces a method for tracking the internal structures of the liver during robot-assisted procedures. Vascular network, tumors and cut planes, computed from pre-operative data, can be overlaid onto the laparoscopic view for image-guidance, even in the case of large motion or deformation of the organ. Compared to current methods, our method is able to precisely propagate surface motion to the internal structures. This is made possible by relying on a fast yet accurate biomechanical model of the liver combined with a robust visual tracking approach designed to properly constrain the model. Augmentation results are demonstrated on in-vivo sequences of a human liver during robotic surgery, while quantitative validation is performed on an ex-vivo porcine liver experimentation. Validation results show that our approach gives an accurate surface registration with an error of less than 6mm on the position of the tumor
- …
