4,742 research outputs found

    Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant.

    Get PDF
    Aims: Whether adjusting interventricular (VV) delay changes haemodynamic efficacy of cardiac resynchronization therapy (CRT) is controversial, with conflicting results. This study addresses whether the convention for keeping atrioventricular (AV) delay constant during VV optimization might explain these conflicts. / Method and results: Twenty-two patients in sinus rhythm with existing CRT underwent VV optimization using non-invasive systolic blood pressure. Interventricular optimization was performed with four methods for keeping the AV delay constant: (i) atrium and left ventricle delay kept constant, (ii) atrium and right ventricle delay kept constant, (iii) time to the first-activated ventricle kept constant, and (iv) time to the second-activated ventricle kept constant. In 11 patients this was performed with AV delay of 120 ms, and in 11 at AV optimum. At AV 120 ms, time to the first ventricular lead (left or right) was the overwhelming determinant of haemodynamics (13.75 mmHg at ±80 ms, P < 0.001) with no significant effect of time to second lead (0.47 mmHg, P = 0.50), P < 0.001 for difference. At AV optimum, time to first ventricular lead again had a larger effect (5.03 mmHg, P < 0.001) than time to second (2.92 mmHg, P = 0.001), P = 0.02 for difference. / Conclusion: Time to first ventricular activation is the overwhelming determinant of circulatory function, regardless of whether this is the left or right ventricular lead. If this is kept constant, the effect of changing time to the second ventricle is small or nil, and is not beneficial. In practice, it may be advisable to leave VV delay at zero. Specifying how AV delay is kept fixed might make future VV delay research more enlightening

    Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy

    Get PDF
    One of the main features in human tetralogy of Fallot (TF) is right ventricular hypertrophy (RVH) due to pressure (sub-pulmonary stenosis) and volume overload (ventricular septal defect). Currently, primary correction at a young age is the treatment of choice. To unravel the role of extracellular matrix in RVH, we examined myocardial expression of collagens and fibronectin in TF patients with primary correction (TF1, age 0.7 ± 0.2 yr,), secondary surgery (TF2, age 36.9 ± 4.6 yr), and in age-matched control patients. Sirius red staining quantified by video imaging showed significantly increased interstitial staining for collagens in both TF1 and TF2 groups as compared to respective controls. Fibronectin was expressed in extracellular spaces, perivascular regions, and in some cardiomyocytes. Quantitative analysis of fibronectin revealed increased expression in only TF1 group as compared to respective control. Our results indicate an increased amount of myocardial extracellular matrix deposition as a sign of fibrosis during RVH in patients with TF

    Ternary Syndrome Decoding with Large Weight

    Get PDF
    The Syndrome Decoding problem is at the core of many code-based cryptosystems. In this paper, we study ternary Syndrome Decoding in large weight. This problem has been introduced in the Wave signature scheme but has never been thoroughly studied. We perform an algorithmic study of this problem which results in an update of the Wave parameters. On a more fundamental level, we show that ternary Syndrome Decoding with large weight is a really harder problem than the binary Syndrome Decoding problem, which could have several applications for the design of code-based cryptosystems

    Global distribution of two fungal pathogens threatening endangered sea turtles

    Get PDF
    This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD

    Роль нових форм організації наукових досліджень у підвищенні інноваційного потенціалу НАН України

    Get PDF
    Здійснено порівняльний аналіз інноваційних розробок учених НАН України, частина яких перевершує показники зарубіжних або не має відповідних аналогів у світі, а також розглянуто значення нових форм організації наукових досліджень. Запропоновано першочергові заходи для підвищення ролі науки в інноваційному розвитку суспільства.Осуществлен сравнительный анализ инновационных разработок ученых НАН Украины, часть которых превосходит показатели зарубежных или не имеет соответствующих аналогов в мире, а также рассмотрено значение новых форм организации научных исследований. Предложены первоочередные меры по повышению роли науки в инновационном развитии общества.The comparative analysis of innovative developments of scientists of NAS of Ukraine, part of which excels foreign indexes or does not have proper analogues in the world is carried out. Value of new forms of scientific researche organization is determined. Primary measures are offered for the increase of science role in innovative development of society

    Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden

    Get PDF
    Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember&#8482;, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.http://deepblue.lib.umich.edu/bitstream/2027.42/78314/1/1750-1326-5-45.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/2/1750-1326-5-45.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/3/1750-1326-5-45-S1.PDFPeer Reviewe

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms

    Full text link
    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.Comment: 3 figures, 1 tabl
    corecore