213 research outputs found

    Forming double-barred galaxies from dynamically cool inner disks

    Get PDF
    About one-third of early-type barred galaxies host small-scale secondary bars. The formation and evolution of such double-barred (S2B) galaxies remain far from being well understood. In order to understand the formation of such systems, we explore a large parameter space of isolated pure-disk simulations. We show that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady secondary bar while the outer disk forms a large-scale primary bar. The independent bar instabilities of inner and outer disks result in long-lived double-barred structures whose dynamical properties are comparable to those in observations. This formation scenario indicates that the secondary bar might form from the general bar instability, the same as the primary bar. Under some circumstances, the interaction of the bars and the disk leads to the two bars aligning or single, nuclear, bars only. Simulations that are cool enough of the center to experience clump instabilities may also generate steady S2B galaxies. In this case, the secondary bars are “fast,” i.e., the bar length is close to the co-rotation radius. This is the first time that S2B galaxies containing a fast secondary bar are reported. Previous orbit-based studies had suggested that fast secondary bars were not dynamically possibl

    Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey

    Get PDF
    We present an analysis of 11 bright far-IR/submm sources discovered through a combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each source has a redshift z=2.2-3.6 obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA, and optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um and 2 mm, respectively. All objects are bright, isolated point sources in the 18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking either near the 350 um or the 500 um bands of SPIRE, and with apparent far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes, CO line widths and luminosities, dust temperatures, and far-infrared luminosities provide additional empirical evidence that these are strongly gravitationally lensed high-redshift galaxies. We discuss their dust masses and temperatures, and use additional WISE 22-um photometry and template fitting to rule out a significant contribution of AGN heating to the total infrared luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux densities brighter than expected from the local far-infrared-radio correlation, but in the range previously found for high-z submm galaxies, one has a deficit of FIR emission, and 6 are consistent with the local correlation. The global dust-to-gas ratios and star-formation efficiencies of our sources are predominantly in the range expected from massive, metal-rich, intense, high-redshift starbursts. An extensive multi-wavelength follow-up programme is being carried out to further characterize these sources and the intense star-formation within them.Comment: A&A accepte

    SMA/PdBI multiple line observations of the nearby Seyfert2 galaxy NGC 1068: Shock related gas kinematics and heating in the central 100pc?

    Full text link
    We present high angular resolution (0.5-2.0") observations of the mm continuum and the 12CO(J=3-2), 13CO(J=3-2), 13CO(J=2-1), C18O(J=2-1), HCN(J=3-2), HCO+(J=4-3) and HCO+(J=3-2) line emission in the circumnuclear disk (r=100pc) of the proto-typical Seyfert type-2 galaxy NGC1068, carried out with the Submillimeter Array. We further include in our analysis new 13CO(J=1-0) and improved 12CO(J=2-1) observations of NGC1068 at high angular resolution (1.0-2.0") and sensitivity, conducted with the IRAM Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central ~100pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC1068 is radially blown outwards as a result of shocks. This shock scenario is further supported by quite warm (Tkin>=200K) and dense (nH2=10^4cm^-3) gas constrained from the observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[12CO]=10^-3.5. This is slightly higher than the abundances derived for galactic and extragalactic starforming/starbursting regions. This results lends further support to X-ray enhanced HCN formation in the circumnuclear disk of NGC1068, as suggested by earlier studies. The HCO+ abundance ([HCO+]/[12CO]=10^-5) appears to be somewhat lower than that of galactic and extragalactic starforming/starbursting regions. When trying to fit the cm to mm continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to over-predict the mm continuum emission.Comment: accepted for publication by ApJ; 35pages, 22 figures and 6 tables (at the end of the file); 3 figures have been decreased in quality to match size limi

    H-ATLAS: a candidate high redshift cluster/protocluster of star-forming galaxies

    Get PDF
    We investigate the region around the Planck-detected z=3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 >~7 mJy) sources at >4sigma closer than 5 arcmin to the lensed object at 850/870 microns. Ten of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350 micron flux > 250 micron flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ~1 arcsecond, allowing unambiguous cross identification with a 3.6 and 4.5 micron Spitzer source. The optical/near-IR spectral energy distribution (SED) of this source is measured by further observations and found to be consistent with z>2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time

    Constraining GRB Emission Physics with Extensive Early-Time, Multiband Follow-up

    Get PDF
    Understanding the origin and diversity of emission processes responsible for Gamma-ray Bursts (GRBs) remains a pressing challenge. While prompt and contemporaneous panchromatic observations have the potential to test predictions of the internal-external shock model, extensive multiband imaging has been conducted for only a few GRBs. We present rich, early-time, multiband datasets for two \swift\ events, GRB 110205A and GRB 110213A. The former shows optical emission since the early stages of the prompt phase, followed by the steep rising in flux up to ~1000s after the burst (tαt^{-\alpha} with α=6.13±0.75\alpha=-6.13 \pm 0.75). We discuss this feature in the context of the reverse-shock scenario and interpret the following single power-law decay as being forward-shock dominated. Polarization measurements, obtained with the RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the nature of the emitting ejecta. The latter event, instead, displays a very peculiar optical to near-infrared lightcurve, with two achromatic peaks. In this case, while the first peak is probably due to the onset of the afterglow, we interpret the second peak to be produced by newly injected material, signifying a late-time activity of the central engine.Comment: 48 pages,11 figures, 24 tables. Accepted to The Astrophysical Journa

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Constraints on the circumstellar dust around KIC 8462852

    Get PDF
    © The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present millimetre (SMA) and sub-millimetre (SCUBA-2) continuum observations of the peculiar star KIC 8462852 which displayed several deep and aperiodic dips in brightness during the Kepler mission. Our observations are approximately confusion-limited at 850 μ\mum and are the deepest millimetre and sub-millimetre photometry of the star that has yet been carried out. No significant emission is detected towards KIC 8462852. We determine upper limits for dust between a few 106^{-6} M_{\oplus} and 103^{-3} M_{\oplus} for regions identified as the most likely to host occluding dust clumps and a total overall dust budget of <<7.7 M_{\oplus} within a radius of 200 AU. Such low limits for the inner system make the catastrophic planetary disruption hypothesis unlikely. Integrating over the Kepler lightcurve we determine that at least 109^{-9} M_{\oplus} of dust is required to cause the observed Q16 dip. This is consistent with the currently most favoured cometary breakup hypothesis, but nevertheless implies the complete breakup of \sim 30 Comet 1/P Halley type objects. Finally, in the wide SCUBA-2 field-of-view we identify another candidate debris disc system that is potentially the largest yet discovered.Peer reviewedFinal Published versio

    Positive youth development in swimming: clarification and consensus of key psychosocial assets

    Get PDF
    The purpose of this study was to gain a more cohesive understanding of the assets considered necessary to develop in young swimmers to ensure both individual and sport specific development. This two stage study involved (a) a content analysis of key papers to develop a list of both psychosocial skills for performance enhancement and assets associated with positive youth development, and (b) in-depth interviews involving ten expert swim coaches, practitioners and youth sport scholars. Five higher order categories containing seventeen individual assets emerged. These results are discussed in relation to both existing models of positive youth development and implications for coaches, practitioners and parents when considering the psychosocial development of young British swimmers

    Pre-ALMA observations of GRBs in the mm/submm range

    Full text link
    GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this range crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.Comment: 23 pages, 14 figures, 5 tables (one big one!), Accepted for publication in A&A. Includes the first observation of a GRB afterglow with ALM

    The Nature of 500 micron Risers III: A Small Complete Sample

    Full text link
    Herschel surveys have found large numbers of sources with red far-IR colours, and spectral energy distributions (SEDs) rising from 250 to 500μ\mum: 500 risers. The nature and role of these sources is not fully understood. We here present Submillimeter Array (SMA) interferometric imaging at 200 GHz of a complete sample of five 500 risers with F500 >> 44 mJy selected within a 4.5 square degree region of the XMMLSS field. These observations can resolve the separate components of multiple sources and allow cross identification at other wavelengths using the extensive optical-to-IR data in this field. Of our five targets we find that two are likely gravitationally lensed, two are multiple sources, and one an isolated single source. Photometric redshifts, using optical-to-IR data and far-IR/submm data, suggest they lie at redshifts z2.53.5z \sim 2.5 - 3.5. Star formation rates and stellar masses estimated from the SEDs show that the majority of our sources lie on the star-formation rate-stellar mass `main sequence', though with outliers both above and below this relation. Of particular interest is our most multiple source which consists of three submm emitters and one submm-undetected optical companion within a 7 arcsecond region, all with photometric redshifts \sim 3. One of the submm emitters in this group lies above the `main sequence', while the optical companion lies well below the relation, and has an estimated stellar mass of 3.3±1.3×\pm 1.3 \times1011^{11} M_{\odot}. We suggest this object is a forming brightest cluster galaxy (BCG) in the process of accreting actively star forming companions.Comment: Accepted for publication in MNRA
    corecore