2,515 research outputs found
Coexistence of magnetism and superconductivity in CeRh1-xIrxIn5
We report a thermodynamic and transport study of the phase diagram of
CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3
< x < 1, including a substantial range of concentration (0.3 < x <0.6) over
which it coexists with magnetic order (which is observed for 0 < x < 0.6). The
anomalous transition to zero resistance that is observed in CeIrIn5 is robust
against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is
more than double that of CeIrIn5, whereas the zero-resistance transition
temperature is relatively unchanged for 0.5 < x < 1
The Missing Link: Magnetism and Superconductivity
The effect of magnetic moments on superconductivity has long been a
controversial subject in condensed matter physics. While Matthias and
collaborators experimentally demonstrated the destruction of superconductivity
in La by the addition of magnetic moments (Gd), it has since been suggested
that magnetic fluctuations are in fact responsible for the development of
superconducting order in other systems. Currently this debate is focused on
several families of unconventional superconductors including high-Tc cuprates,
borocarbides as well as heavy fermion systems where magnetism and
superconductivity are known to coexist. Here we report a novel aspect of
competition and coexistence of these two competing orders in an interesting
class of heavy fermion compounds, namely the 1-1-5 series: CeTIn5 where T=Co,
Ir, or Rh. Our optical experiments indicate the existence of regions in
momentum space where local moments remain unscreened. The extent of these
regions in momentum space appears to control both the normal and
superconducting state properties in the 1-1-5 family of heavy fermion (HF)
superconductors.Comment: 6 pages, 2 figure
Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an
unresolved challenge in quantum matter studies; it may also relate closely to
finding the pairing mechanism of high temperature superconductivity.
Magnetically mediated Cooper pairing has long been the conjectured basis of
heavy-fermion superconductivity but no direct verification of this hypothesis
was achievable. Here, we use a novel approach based on precision measurements
of the heavy-fermion band structure using quasiparticle interference (QPI)
imaging, to reveal quantitatively the momentum-space (k-space) structure of the
f-electron magnetic interactions of CeCoIn5. Then, by solving the
superconducting gap equations on the two heavy-fermion bands
with these magnetic interactions as mediators of the
Cooper pairing, we derive a series of quantitative predictions about the
superconductive state. The agreement found between these diverse predictions
and the measured characteristics of superconducting CeCoIn5, then provides
direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the
f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure
Node-like excitations in superconducting PbMo6S8 probed by scanning tunneling spectroscopy
We present the first scanning tunneling spectroscopy study on the Chevrel
phase PbMo6S8, an extreme type II superconductor with a coherence length only
slightly larger than in high-Tc cuprates. Tunneling spectra measured on
atomically flat terraces are spatially homogeneous and show well-defined
coherence peaks. The low-energy spectral weight, the zero bias conductance and
the temperature dependence of the gap are incompatible with a conventional
isotropic s-wave interpretation, revealing the presence of low-energy
excitations in the superconducting state. We show that our data are consistent
with the presence of nodes in the superconducting gap.Comment: To appear in PRB; 5 pages, 4 figure
On the origin of the zero-resistance anomaly in heavy fermion superconducting Ir: a clue from magnetic field and Rh-doping studies
We present the results of the specific heat and AC magnetic susceptibility
measurements of for x from 0 to 0.5. As x is increased
from 0 both quantities reflect the competition between two effects. The first
is a suppression of superconductivity below the bulk transition temperature of
T K, which is due to the pair breaking effect of Rh impurities. The
second is an increase in the volume fraction of the superconducting regions
above T, which we attribute to defect-induced strain. Analysis of the H-T
phase diagram for CeIrInobtained from the bulk probes and resistance
measurements points to the filamentary origin of the inhomogeneous
superconductivity at T K, where the resistance drops to
zero. The identical anisotropies in the magnetic field dependence of the
specific heat and the resistance anomalies in CeIrIn indicate that the
filamentary superconductivity is intrinsic, involving electrons from the part
of the Fermi surface responsible for bulk superconductivity.Comment: 4 page
Magnetic structure and critical behavior of GdRhIn: resonant x-ray diffraction and renormalization group analysis
The magnetic structure and fluctuations of tetragonal GdRhIn5 were studied by
resonant x-ray diffraction at the Gd LII and LIII edges, followed by a
renormalization group analysis for this and other related Gd-based compounds,
namely Gd2IrIn8 and GdIn3. These compounds are spin-only analogs of the
isostructural Ce-based heavy-fermion superconductors. The ground state of
GdRhIn5 shows a commensurate antiferromagnetic spin structure with propagation
vector tau = (0,1/2, 1/2), corresponding to a parallel spin alignment along the
a-direction and antiparallel alignment along b and c. A comparison between this
magnetic structure and those of other members of the Rm(Co,Rh,Ir)n In3m+2n
family (R =rare earth, n = 0, 1; m = 1, 2) indicates that, in general, tau is
determined by a competition between first-(J1) and second-neighbor(J2)
antiferromagnetic (AFM) interactions. While a large J1 /J2 ratio favors an
antiparallel alignment along the three directions (the so-called G-AFM
structure), a smaller ratio favors the magnetic structure of GdRhIn5 (C-AFM).
In particular, it is inferred that the heavy-fermion superconductor CeRhIn5 is
in a frontier between these two ground states, which may explain its
non-collinear spiral magnetic structure. The critical behavior of GdRhIn5 close
to the paramagnetic transition at TN = 39 K was also studied in detail. A
typical second-order transition with the ordered magnetization critical
parameter beta = 0.35 was experimentally found, and theoretically investigated
by means of a renormalization group analysis.Comment: 22 pages, 4 figure
Superconducting MgB2 thin films by pulsed laser deposition
Growth of MgB2 thin films by pulsed laser deposition is examined under ex
situ and in situ processing conditions. For the ex situ process, Boron films
grown by PLD were annealed at 900 C with excess Mg. For the in situ process,
different approaches involving ablation from a stoichiometric target under
different growth conditions, as well as multilayer deposition involving
interposed Mg layers were examined and analyzed. Magnetic measurements on ex
situ processed films show TC of ~39 K, while the current best in situ films
show a susceptibility transition at ~ 22 K.Comment: 3 pages, PD
Field-Induced Quantum Critical Point in CeCoIn5
The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a
function of temperature, down to 25 mK and in magnetic fields of up to 16 T
applied perpendicular to the basal plane. With increasing field, we observe a
suppression of the non-Fermi liquid behavior, rho ~ T, and the development of a
Fermi liquid state, with its characteristic rho = rho_0 + AT^2 dependence. The
field dependence of the T^2 coefficient shows critical behavior with an
exponent of 1.37. This is evidence for a field-induced quantum critical point
(QCP), occuring at a critical field which coincides, within experimental
accuracy, with the superconducting critical field H_c2. We discuss the relation
of this field-tuned QCP to a change in the magnetic state, seen as a change in
magnetoresistance from positive to negative, at a crossover line that has a
common border with the superconducting region below ~ 1 K.Comment: 4 pages, 3 figures (published version
Two dimensional Dirac fermions and quantum magnetoresistance in CaMnBi
We report two dimensional Dirac fermions and quantum magnetoresistance in
single crystals of CaMnBi. The non-zero Berry's phase, small cyclotron
resonant mass and first-principle band structure suggest the existence of the
Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance
exhibits a crossover at a critical field from semiclassical weak-field
dependence to the high-field unsaturated linear magnetoresistance ( in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The
temperature dependence of satisfies quadratic behavior, which is
attributed to the splitting of linear energy dispersion in high field. Our
results demonstrate the existence of two dimensional Dirac fermions in
CaMnBi with Bi square nets.Comment: 5 pages, 4 figure
Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients
© 2012 Joksic et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Fanconi anemia (FA) is characterized by sensitivity to DNA cross-linking agents, mild cellular, and marked clinical radio sensitivity. In this study we investigated telomeric abnormalities of non-immortalized primary cells (lymphocytes and fibroblasts) derived from FA patients of the FA-D2 complementation group, which provides a more accurate physiological assessment than is possible with transformed cells or animal models. Results: We analyzed telomere length, telomere dysfunction-induced foci (TIFs), sister chromatid exchanges (SCE), telomere sister chromatid exchanges (T-SCE), apoptosis and expression of shelterin components TRF1 and TRF2. FANCD2 lymphocytes exhibited multiple types of telomeric abnormalities, including premature telomere shortening, increase in telomeric recombination and aberrant telomeric structures ranging from fragile to long-string extended telomeres. The baseline incidence of SCE in FANCD2 lymphocytes was reduced when compared to control, but in response to diepoxybutane (DEB) the 2-fold higher rate of SCE was observed. In contrast, control lymphocytes showed decreased SCE incidence in response to DEB treatment. FANCD2 fibroblasts revealed a high percentage of TIFs, decreased expression of TRF1 and invariable expression of TRF2. The percentage of TIFs inversely correlated with telomere length, emphasizing that telomere shortening is the major reason for the loss of telomere capping function. Upon irradiation, a significant decrease of TIFs was observed at all recovery times. Surprisingly, a considerable percentage of TIF positive cells disappeared at the same time when incidence of γ-H2AX foci was maximal. Both FANCD2 leucocytes and fibroblasts appeared to die spontaneously at higher rate than control. This trend was more evident upon irradiation; the percentage of leucocytes underwent apoptosis was 2.59- fold higher than that in control, while fibroblasts exhibited a 2- h delay before entering apoptosis. Conclusion:
The results of our study showed that primary cells originating from FA-D2 patients display shorten telomeres, elevated incidence of T-SCEs and high frequency of TIFs. Disappearance of TIFs in early response to irradiation represent distinctive feature of FANCD2 cells that should be examined further.This article is made available through the Brunel Open Access Publishing Fund. This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project No.173046)
- …
