21,632 research outputs found
Higher Gauge Theory and Gravity in (2+1) Dimensions
Non-abelian higher gauge theory has recently emerged as a generalization of
standard gauge theory to higher dimensional (2-dimensional in the present
context) connection forms, and as such, it has been successfully applied to the
non-abelian generalizations of the Yang-Mills theory and 2-form
electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a
fertile testing ground for many concepts related to classical and quantum
gravity, and it is therefore only natural to investigate whether we can find an
application of higher gauge theory in this latter context. In the present paper
we investigate the possibility of applying the formalism of higher gauge theory
to gravity in (2+1) dimensions, and we show that a nontrivial model of
(2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the
model - can be formulated both as a standard gauge theory and
as a higher gauge theory. Since the model has a very rich structure - it admits
as solutions black-hole BTZ-like geometries, particle-like geometries as well
as Robertson-Friedman-Walker cosmological-like expanding geometries - this
opens a wide perspective for higher gauge theory to be tested and understood in
a relevant gravitational context. Additionally, it offers the possibility of
studying gravity in (2+1) dimensions coupled to matter in an entirely new
framework.Comment: 22 page
Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method
We present a new numerical scheme to solve the initial value problem for
black hole-neutron star binaries. This method takes advantage of the
flexibility and fast convergence of a multidomain spectral representation of
the initial data to construct high-accuracy solutions at a relatively low
computational cost. We provide convergence tests of the method for both
isolated neutron stars and irrotational binaries. In the second case, we show
that we can resolve the small inconsistencies that are part of the
quasi-equilibrium formulation, and that these inconsistencies are significantly
smaller than observed in previous works. The possibility of generating a wide
variety of initial data is also demonstrated through two new configurations
inspired by results from binary black holes. First, we show that choosing a
modified Kerr-Schild conformal metric instead of a flat conformal metric allows
for the construction of quasi-equilibrium binaries with a spinning black hole.
Second, we construct binaries in low-eccentricity orbits, which are a better
approximation to astrophysical binaries than quasi-equilibrium systems.Comment: 19 pages, 11 figures, Modified to match final PRD versio
Process for purification of silicon
The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step
Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics
Binary black-hole systems are expected to be important sources of
gravitational waves for upcoming gravitational-wave detectors. If the spins are
not colinear with each other or with the orbital angular momentum, these
systems exhibit complicated precession dynamics that are imprinted on the
gravitational waveform. We develop a new procedure to match the precession
dynamics computed by post-Newtonian (PN) theory to those of numerical binary
black-hole simulations in full general relativity. For numerical relativity NR)
simulations lasting approximately two precession cycles, we find that the PN
and NR predictions for the directions of the orbital angular momentum and the
spins agree to better than with NR during the inspiral,
increasing to near merger. Nutation of the orbital plane on the
orbital time-scale agrees well between NR and PN, whereas nutation of the spin
direction shows qualitatively different behavior in PN and NR. We also examine
how the PN equations for precession and orbital-phase evolution converge with
PN order, and we quantify the impact of various choices for handling partially
known PN terms
Ultraslow Electron Spin Dynamics in GaAs Quantum Wells Probed by Optically Pumped NMR
Optically pumped nuclear magnetic resonance (OPNMR) measurements were
performed in two different electron-doped multiple quantum well samples near
the fractional quantum Hall effect ground state nu=1/3. Below 0.5K, the spectra
provide evidence that spin-reversed charged excitations of the nu=1/3 ground
state are localized over the NMR time scale of ~40 microseconds. Furthermore,
by varying NMR pulse parameters, the electron spin temperature (as measured by
the Knight shift) could be driven above the lattice temperature, which shows
that the value of the electron spin-lattice relaxation time lies between 100
microseconds and 500 milliseconds at nu=1/3.Comment: 6 pages (REVTEX), 6 eps figures embedded in text; published version;
minor changes to match published versio
Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations
Binary neutron star mergers are promising sources of gravitational waves for
ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by
these mergers may also be the main source of r-process elements in the
Universe, while radioactive decays in the ejecta can power bright
electromagnetic post-merger signals. Neutrino-matter interactions play a
critical role in the evolution of the composition of the ejected material,
which significantly impacts the outcome of nucleosynthesis and the properties
of the associated electromagnetic signal. In this work, we present a simulation
of a binary neutron star merger using an improved method for estimating the
average neutrino energies in our energy-integrated neutrino transport scheme.
These energy estimates are obtained by evolving the neutrino number density in
addition to the neutrino energy and flux densities. We show that significant
changes are observed in the composition of the polar ejecta when comparing our
new results with earlier simulations in which the neutrino spectrum was assumed
to be the same everywhere in optically thin regions. In particular, we find
that material ejected in the polar regions is less neutron rich than previously
estimated. Our new estimates of the composition of the polar ejecta make it
more likely that the color and timescale of the electromagnetic signal depend
on the orientation of the binary with respect to an observer's line-of-sight.
These results also indicate that important observable properties of neutron
star mergers are sensitive to the neutrino energy spectrum, and may need to be
studied through simulations including a more accurate, energy-dependent
neutrino transport scheme.Comment: 19p, 17 figures, Accepted by Phys.Rev.
Radial-breathing-like phonon modes of double-walled carbon nanotubes
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon
nanotubes are studied in a simple analytical model, in which the interaction
force constants (FCs) can be obtained analytically from the continuous model.
The RBLMs frequencies are obtained by solving the dynamical matrix, and their
relationship with the tube radii can be obtained analytically, offering a
powerful experimental tool for determining precisely the radii of the
multi-walled carbon nanotubes
- …
