2,173 research outputs found
Constraining the dark cusp in the Galactic Center by long-period binaries
Massive black holes (MBHs) in galactic nuclei are believed to be surrounded
by a high density stellar cluster, whose mass is mostly in hard-to-detect faint
stars and compact remnants. Such dark cusps dominate the dynamics near the MBH:
a dark cusp in the Galactic center (GC) of the Milky Way would strongly affect
orbital tests of General Relativity there; on cosmic scales, dark cusps set the
rates of gravitational wave emission events from compact remnants that spiral
into MBHs, and they modify the rates of tidal disruption events, to list only
some implications. A recently discovered long-period massive young binary (P_12
<~ 1 yr, M_12 ~ O(100 M_sun), T_12 ~ 6x10^6 yr), only ~0.1 pc from the Galactic
MBH (Pfuhl et al 2013), sets a lower bound on the 2-body relaxation timescale
there, min t_rlx ~ (P_12/M_12)^(2/3)T_12 ~ 10^7 yr, and correspondingly, an
upper bound on the stellar number density, max n ~ few x 10^8/
1/pc^3, based on the binary's survival against evaporation by the dark cusp.
However, a conservative dynamical estimate, the drain limit, implies t_rlx >
O(10^8) yr. Such massive binaries are thus too short-lived and tightly bound to
constrain a dense relaxed dark cusp. We explore here in detail the use of
longer-period, less massive and longer-lived binaries (P_12 ~ few yr, M_12 ~
2-4 M_sun, T_12 ~ 10^8-10^10 yr), presently just below the detection threshold,
for probing the dark cusp, and develop the framework for translating their
future detections among the giants in the GC into dynamical constraints.Comment: 13 pp. Submitted to Ap
On the origin of the B-stars in the Galactic center
We present a new directly-observable statistic which uses sky position and
proper motion of stars near the Galactic center massive black hole to identify
populations with high orbital eccentricities. It is most useful for stars with
large orbital periods for which dynamical accelerations are difficult to
determine. We apply this statistic to a data set of B-stars with projected
radii 0."1 < p < 25" (~0.004 - 1 pc) from the massive black hole in the
Galactic center. We compare the results with those from N-body simulations to
distinguish between scenarios for their formation. We find that the scenarios
favored by the data correlate strongly with particular K-magnitude intervals,
corresponding to different zero-age main-sequence (MS) masses and lifetimes.
Stars with 14 < mK < 15 (15 - 20 solar masses, t_{MS} = 8-13 Myr) match well to
a disk formation origin, while those with mK > 15 (13
Myr), if isotropically distributed, form a population that is more eccentric
than thermal, which suggests a Hills binary-disruption origin.Comment: Updated paper. 21 pages, 28 figures, 6 tables, ApJ accepte
Erythropoietin production by fetal mouse liver cells in response to hypoxia and adenylate cyclase stimulation
This study was done to investigate aspects of control of extrarenal erythropoietin (Ep) production. To this end we studied the effects of three stimuli of renal Ep production in the adult, i.e. hypoxia, cobalt, and activation of adenylate cyclase on Ep generation by cultured fetal mouse liver cells. The fetal liver was taken as a model for extrarenal Ep production because this organ is considered the predominant site of extrarenal Ep production. We found that Ep production by the cells increased as the oxygen concentration was decreased in the incubation atmosphere from 20% to 1%. Cobalt (10(-4)-10(-5) M) had no effect on Ep production. Activation of adenylate cyclase by forskolin (10(-5) M) or isoproterenol (10(-5) M) greatly enhanced Ep production. These findings indicate that the Ep-stimulating effect of cobalt is specific for the kidney. However, oxygen depletion and activation of adenylate cyclase seem to be more general stimuli in Ep-producing cells. Furthermore we found that Ep production in hypoxia correlated with lactate formation in the cultured liver cells. This finding suggests that Ep production in fetal livers under hypoxic conditions parallels the shift from aerobic to anaerobic cellular energy metabolism
Hydrodynamical simulations of a compact source scenario for G2
The origin of the dense gas cloud G2 discovered in the Galactic Center
(Gillessen et al. 2012) is still a debated puzzle. G2 might be a diffuse cloud
or the result of an outflow from an invisible star embedded in it. We present
here detailed simulations of the evolution of winds on G2's orbit. We find that
the hydrodynamic interaction with the hot atmosphere present in the Galactic
Center and the extreme gravitational field of the supermassive black hole must
be taken in account when modeling such a source scenario. We find that the
hydrodynamic interaction with the hot atmosphere present in the Galactic Center
and the extreme gravitational field of the supermassive black hole must be
taken in account when modeling such a source scenario. We also find that in
this scenario most of the Br\gamma\ luminosity is expected to come from the
highly filamentary densest shocked wind material. G2's observational properties
can be used to constrain the properties of the outflow and our best model has a
mass outflow rate of Mdot,w=8.8 x 10^{-8} Msun/yr and a wind velocity of vw =
50 km/s. These values are compatible with those of a young TTauri star wind, as
already suggested by Scoville & Burkert (2013).Comment: 4 pages, 3 figures; Proceeding of the IAU 303: "The GC: Feeding and
Feedback in a Normal Galactic Nucleus" / September 30 - October 4, 2013,
Santa Fe, New Mexico (USA
The power of monitoring stellar orbits
The center of the Milky Way hosts a massive black hole. The observational
evidence for its existence is overwhelming. The compact radio source Sgr A* has
been associated with a black hole since its discovery. In the last decade,
high-resolution, near-infrared measurements of individual stellar orbits in the
innermost region of the Galactic Center have shown that at the position of Sgr
A* a highly concentrated mass of 4 x 10^6 M_sun is located. Assuming that
general relativity is correct, the conclusion that Sgr A* is a massive black
hole is inevitable. Without doubt this is the most important application of
stellar orbits in the Galactic Center. Here, we discuss the possibilities going
beyond the mass measurement offered by monitoring these orbits. They are an
extremely useful tool for many scientific questions, such as a geometric
distance estimate to the Galactic Center or the puzzle, how these stars reached
their current orbits. Future improvements in the instrumentation will open up
the route to testing relativistic effects in the gravitational potential of the
black hole, allowing to take full advantage of this unique laboratory for
celestial mechanics.Comment: Proceedings of the Galactic Center Workshop 2009, Shangha
Pericenter passage of the gas cloud G2 in the Galactic Center
We have further followed the evolution of the orbital and physical properties
of G2, the object currently falling toward the massive black hole in the
Galactic Center on a near-radial orbit. New, very sensitive data were taken in
April 2013 with NACO and SINFONI at the ESO VLT . The 'head' of G2 continues to
be stretched ever further along the orbit in position-velocity space. A
fraction of its emission appears to be already emerging on the blue-shifted
side of the orbit, past pericenter approach. Ionized gas in the head is now
stretched over more than 15,000 Schwarzschild radii RS around the pericenter of
the orbit, at ~ 2000 RS ~ 20 light hours from the black hole. The pericenter
passage of G2 will be a process stretching over a period of at least one year.
The Brackett-{\gamma} luminosity of the head has been constant over the past 9
years, to within +- 25%, as have the line ratios Brackett-{\gamma} /
Paschen-{\alpha} and Brackett-{\gamma} / Helium-I. We do not see any
significant evidence for deviations of G2's dynamical evolution, due to
hydrodynamical interactions with the hot gas around the black hole, from a
ballistic orbit of an initially compact cloud with moderate velocity
dispersion. The constant luminosity and the increasingly stretched appearance
of the head of G2 in the position-velocity plane, without a central peak, is
not consistent with several proposed models with continuous gas release from an
initially bound zone around a faint star on the same orbit as G2.Comment: 10 figures, submitted to Ap
GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age
The stellar population in the central parsec of the Galaxy is dominated by an
old (several Gyr) population, but young, massive stars dominate the luminosity
function. We have studied the most luminous of these stars, GCIRS 7, in order
to constrain the age of the recent star formation event in the Galactic Centre
and to characterise it as an interferometric reference for observations of the
Galactic Centre with the instrument GRAVITY, which will equip the Very Large
Telescope Interferometer in the near future. We present the first H-band
interferometric observations of GCIRS 7, obtained using the PIONIER visitor
instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we
present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on
data spanning 4 decades, and measured the star's effective temperature using
SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013:
uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We
detect a significant circumstellar contribution at K-band. The star and its
environment are variable in brightness and in size. The photospheric H-band
variations are well modelled with two periods: P0~470+/-10 days (amplitude
~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured
from CO equivalent width, =3600+/-195K. The size, periods, luminosity
(=-8.44+/-0.22) and effective temperature are consistent with an M1
supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr
(depending on rotation). This age is in remarkable agreement with most
estimates for the recent star formation event in the central parsec. Caution
should be taken when using this star as an interferometric reference as it is
variable in size, is surrounded by a variable circumstellar environment and
large convection cells may form on its photosphere.Comment: Accepted for publication in A&A. 10 pages, 12 figure
Massive binaries in the vicinity of Sgr A*
A long-term spectroscopic and photometric survey of the most luminous and
massive stars in the vicinity of the super-massive black hole Sgr A* revealed
two new binaries; a long-period Ofpe/WN9 binary, GCIRS 16NE, with a modest
eccentricity of 0.3 and a period of 224 days and an eclipsing Wolf-Rayet binary
with a period of 2.3 days. Together with the already identified binary GCIRS
16SW, there are now three confirmed OB/WR binaries in the inner 0.2\,pc of the
Galactic Center. Using radial velocity change upper limits, we were able to
constrain the spectroscopic binary fraction in the Galactic Center to at a confidence level of 95%, a massive binary
fraction similar to that observed in dense clusters. The fraction of eclipsing
binaries with photometric amplitudes is , which is consistent with local OB star clusters ().
Overall the Galactic Center binary fraction seems to be close to the binary
fraction in comparable young clusters.Comment: 5 figures, submitted to Ap
- …
