215 research outputs found
Single-sex schistosome infections of definitive hosts: Implications for epidemiology and disease control in a changing world
Search for neutral charmless B decays at LEP
A search for rare charmless decays of \Bd and \Bs mesons has been performed in the exclusive channels \Bd_{(\mathrm s)}\ra\eta\eta, \Bd_{(\mathrm s)}\ra\eta\pio and \Bd_{(\mathrm s)}\ra\pio\pio. The data sample consisted of three million hadronic \Zo decays collected by the L3 experiment at LEP from 1991 through 1994. No candidate event has been observed and the following upper limits at 90\% confidence level on the branching ratios have been set \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\eta)<4.1\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\eta)<1.5\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\pio)<2.5\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\pio)<1.0\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\pio\pio)<6.0\times 10^{-5},\,\, \mathrm{Br}(\Bs\ra\pio\pio)<2.1\times 10^{-4}. \end{displaymath} These are the first experimental limits on \Bd\ra\eta\eta and on the \Bs neutral charmless modes
Nestedness of Ectoparasite-Vertebrate Host Networks
Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks
Comparative phylogeography between two generalist flea species reveal a complex interaction between parasite life history and host vicariance: parasite-host association matters
Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies
We determine the relative rates of short GRBs in cluster and field early-type
galaxies as a function of the age probability distribution of their
progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the
difference in the growth of stellar mass in clusters and in the field, which
arises from the combined effects of the galaxy stellar mass function, the
early-type fraction, and the dependence of star formation history on mass and
environment. This approach complements the use of the early- to late-type host
galaxy ratio, with the added benefit that the star formation histories of
early-type galaxies are simpler than those of late-type galaxies, and any
systematic differences between progenitors in early- and late-type galaxies are
removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n =
-2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2,
corresponding to n ~ 0 - 1. This is similar to the value inferred from the
ratio of short GRBs in early- and late-type hosts, but it differs from the
value of n ~ -1 for NS binaries in the Milky Way. We stress that this general
approach can be easily modified with improved knowledge of the effects of
environment and mass on the build-up of stellar mass, as well as the effect of
globular clusters on the short GRB rate. It can also be used to assess the age
distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio
Measurement of exclusive branching fractions of hadronic one-prong tau decays
We have measured the branching fractions for the hadronic τ decays, τ → π K nπ° ν (0≤ n ≤3), with the L3 detector at LEP. Multiphoton final states are analyzed using the fine-grained, high-resolution electromagnetic calorimeter. The decay channels are identified using a neural network method. The results are: BR (τ → π K ν ) = (11.82 ± 0.26 ± 0.43) %, BR (τ → π K π° ν) = (25.05 ± 0.35 ± 0.50) %, BR (τ → π K 2π° ν) = (8.88 ± 0.37 ± 0.42) %, BR (τ → π K 3πδ ν) = (1.70 ± 0.24 ± 0.38) %, where the first error quoted is statistical, the second systematic
Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders
Biological and biomedical implications of the co-evolution of pathogens and their hosts
Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and
genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in
practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in
any meaningful way, even though it can have a major influence on how genetic variation in biomedically
important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution
will require changing the way in which we look for it, complementing the phenomenological
approach traditionally favored by evolutionary biologists with the exploitation of the extensive data
becoming available on the molecular biology and molecular genetics of host–pathogen interactions
- …
