130,552 research outputs found
Time-Optimal Path Tracking via Reachability Analysis
Given a geometric path, the Time-Optimal Path Tracking problem consists in
finding the control strategy to traverse the path time-optimally while
regulating tracking errors. A simple yet effective approach to this problem is
to decompose the controller into two components: (i)~a path controller, which
modulates the parameterization of the desired path in an online manner,
yielding a reference trajectory; and (ii)~a tracking controller, which takes
the reference trajectory and outputs joint torques for tracking. However, there
is one major difficulty: the path controller might not find any feasible
reference trajectory that can be tracked by the tracking controller because of
torque bounds. In turn, this results in degraded tracking performances. Here,
we propose a new path controller that is guaranteed to find feasible reference
trajectories by accounting for possible future perturbations. The main
technical tool underlying the proposed controller is Reachability Analysis, a
new method for analyzing path parameterization problems. Simulations show that
the proposed controller outperforms existing methods.Comment: 6 pages, 3 figures, ICRA 201
A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots
This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms
Feynman-Kac representation of fully nonlinear PDEs and applications
The classical Feynman-Kac formula states the connection between linear
parabolic partial differential equations (PDEs), like the heat equation, and
expectation of stochastic processes driven by Brownian motion. It gives then a
method for solving linear PDEs by Monte Carlo simulations of random processes.
The extension to (fully)nonlinear PDEs led in the recent years to important
developments in stochastic analysis and the emergence of the theory of backward
stochastic differential equations (BSDEs), which can be viewed as nonlinear
Feynman-Kac formulas. We review in this paper the main ideas and results in
this area, and present implications of these probabilistic representations for
the numerical resolution of nonlinear PDEs, together with some applications to
stochastic control problems and model uncertainty in finance
PSA-based Prostate Cancer Screening: What to Tell Our Patients
https://scholarworks.uvm.edu/fmclerk/1413/thumbnail.jp
Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications *
We consider the optimal control problem for a linear conditional
McKean-Vlasov equation with quadratic cost functional. The coefficients of the
system and the weigh-ting matrices in the cost functional are allowed to be
adapted processes with respect to the common noise filtration. Semi closed-loop
strategies are introduced, and following the dynamic programming approach in
[32], we solve the problem and characterize time-consistent optimal control by
means of a system of decoupled backward stochastic Riccati differential
equations. We present several financial applications with explicit solutions,
and revisit in particular optimal tracking problems with price impact, and the
conditional mean-variance portfolio selection in incomplete market model.Comment: to appear in Probability, Uncertainty and Quantitative Ris
- …
