172 research outputs found

    New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium

    Get PDF
    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. Standard BBN is now a parameter free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background (CMB) radiation. There is a good agreement between the primordial abundances of 4He, D, 3He and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D/H, to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we re-evaluates the D(p,g)3He, D(d,n)3He and D(d,p)3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S-factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D/H = (2.45±0.10)×105\pm0.10)\times10^{-5} (2σ\sigma), in agreement with observations.Comment: Submitted to Phys. Rev. D. (without the non-essential Tables IV, IX, X and XI provided here

    Displacement Echoes: Classical Decay and Quantum Freeze

    Get PDF
    Motivated by neutron scattering experiments, we investigate the decay of the fidelity with which a wave packet is reconstructed by a perfect time-reversal operation performed after a phase space displacement. In the semiclassical limit, we show that the decay rate is generically given by the Lyapunov exponent of the classical dynamics. For small displacements, we additionally show that, following a short-time Lyapunov decay, the decay freezes well above the ergodic value because of quantum effects. Our analytical results are corroborated by numerical simulations

    Mesoscopic Fluctuations of the Loschmidt Echo

    Full text link
    We investigate the time-dependent variance of the fidelity with which an initial narrow wavepacket is reconstructed after its dynamics is time-reversed with a perturbed Hamiltonian. In the semiclassical regime of perturbation, we show that the variance first rises algebraically up to a critical time tct_c, after which it decays. To leading order in the effective Planck's constant eff\hbar_{\rm eff}, this decay is given by the sum of a classical term exp[2λt]\simeq \exp[-2 \lambda t], a quantum term 2effexp[Γt]\simeq 2 \hbar_{\rm eff} \exp[-\Gamma t] and a mixed term 2exp[(Γ+λ)t]\simeq 2 \exp[-(\Gamma+\lambda)t]. Compared to the behavior of the average fidelity, this allows for the extraction of the classical Lyapunov exponent λ\lambda in a larger parameter range. Our results are confirmed by numerical simulations.Comment: Final, extended version; to appear in Physical Review

    A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures.

    Get PDF
    International audienceWe address the problem of quantitatively assessing myocardial function from tagged MRI sequences. We develop a two-step method comprising (i) a motion estimation step using a novel variational non-rigid registration technique based on generalized information measures, and (ii) a measurement step, yielding local and segmental deformation parameters over the whole myocardium. Experiments on healthy and pathological data demonstrate that this method delivers, within a reasonable computation time and in a fully unsupervised way, reliable measurements for normal subjects and quantitative pathology-specific information. Beyond cardiac MRI, this work redefines the foundations of variational non-rigid registration for information-theoretic similarity criteria with potential interest in multimodal medical imaging

    Characterisation of the vertical temperature gradient in the canopy reveals increased trunk height to be a potential adaptation to climate change

    Get PDF
    Given the important role of temperature in vine development and grape composition, climate change has already impacted wine production. Adaptation strategies are needed in order to sustain the production of wines and maintain their typicity. Several levers of adaptation are possible, including the use of more heat and drought tolerant plant material, relocating the vineyard and adaptations in the cellar. The training system is also a potential lever for adaptation that is relatively easy to implement. Taking that avenue, a study of the vertical thermal gradient in the vine canopy was carried out in order to determine whether trunk height could be an adaptation strategy for manipulating micro-climate in the bunch zone. Temperature was measured at four different heights from the soil (30, 60, 90 and 120 cm) in two adjacent vineyard parcels. One parcel was managed with cover crop and the other by tilling the soil. The results of this study show that increased trunk height is not likely to significantly delay ripeness, but it could minimise the potential damages of both frost and heat wave events. Type of parcel management was found to have an effect: close to the ground, the cover crop parcel generally had lower minimum temperatures and higher maximum temperatures in comparison to the tilled parcel, exposing the vines to an increased risk of both frost and heat wave damage. When investigating the factors driving the vertical thermal gradient, soil moisture and weather type were found to have an impact. Some of these factors, like mean temperature and soil moisture, may exacerbate the vertical temperature gradient of maximum temperature in a climate change context and increase the risk of damages due to extreme temperatures. © 2023, International Viticulture and Enology Society. All rights reserved

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    The Science Case for Multi-Object Spectroscopy on the European ELT

    Get PDF
    This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes ('high multiplex' and 'high definition'). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible.Comment: Significantly expanded and updated version of previous ELT-MOS White Paper, so there is some textual overlap with arXiv:1303.002
    corecore