612 research outputs found

    Exoplanet detection with simultaneous spectral differential imaging: effects of out-of-pupil-plane optical aberrations

    Get PDF
    Imaging faint companions (exoplanets and brown dwarfs) around nearby stars is currently limited by speckle noise. To efficiently attenuate this noise, a technique called simultaneous spectral differential imaging (SSDI) can be used. This technique consists of acquiring simultaneously images of the field of view in several adjacent narrow bands and in combining these images to suppress speckles. Simulations predict that SSDI can achieve, with the acquisition of three wavelengths, speckle noise attenuation of several thousands. These simulations are usually performed using the Fraunhofer approximation, i.e. considering that all aberrations are located in the pupil plane. We have performed wavefront propagation simulations to evaluate how out-of-pupil-plane aberrations affect SSDI speckle noise attenuation performance. The Talbot formalism is used to give a physical insight of the problem; results are confirmed using a proper wavefront propagation algorithm. We will show that near-focal-plane aberrations can significantly reduce SSDI speckle noise attenuation performance at several lambda/D separation. It is also shown that the Talbot effect correctly predicts the PSF chromaticity. Both differential atmospheric refraction effects and the use of a coronagraph will be discussed.Comment: 11 pages, 7 figures. To be published in Proc. SPIE Vol. 6269, p. 1147-1157, Ground-based and Airborne Instrumentation for Astronomy; Ian S. McLean, Masanori Iye; Ed

    As-Cast Residual Stresses in an Aluminum Alloy AA6063 Billet: Neutron Diffraction Measurements and Finite Element Modeling

    Get PDF
    The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperature

    Morphology and Growth Kinetic Advantage of Quenched Twinned Dendrites in Al-Zn Alloys

    Get PDF
    Twinned dendrites appearing in an Al-26 wtpct Zn alloy have been quenched during growth using a specifically designed setup that is positioned on top of a directional solidification experiment. X-ray tomography performed at the Swiss Light Source (SLS-beamline TOMCAT) allowed us to reconstruct the 3D morphology of these structures and to confirm previous observations performed on single 2D sections (Henry et al., Metall Mater Trans A 35A:2495-2501, 2004; Salgado-Ordorica and Rappaz, Acta Mater 56:5708-5718, 2008). Further characterization of these quenched specimens led to a better description of the mechanisms involved in the in-plane and lateral growth propagation of twinned dendrites. These were then put into relation with the competition mechanisms taking place during simultaneous solidification of twinned and regular dendrite

    Quantitative Assessment of Deformation-Induced Damage in a Semisolid Aluminum Alloy via X-ray Microtomography

    Get PDF
    Semisolid tensile testing combined with X-ray microtomography (XMT) was used to characterize the development of internal damage as a function of strain in an aluminum-magnesium alloy, AA5182. Novel techniques were developed to allow the quantification of both the size evolution and orientation of the damage to determine mechanisms controlling the early stage growth and localization. During the initial stages of semisolid deformation, it was observed that strain was accommodated by both the growth of as-cast porosity and the detection of new damage-based voids. As the volume fraction of damage increases, the growth of voids occurs in an orientation perpendicular to the loading direction, both through expansion within the grain boundary liquid and void coalescence. The damage then localizes, causing failur

    Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Get PDF
    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearin

    Overview for Attached Payload Accommodations and Environments

    Get PDF
    External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads

    Connectivity of Phases and Growth Mechanisms in Peritectic Alloys Solidified at Low Speed: an X-Ray Tomography Study of Cu-Sn

    Get PDF
    The variety of microstructures that form at low solidification speed in peritectic alloys, bands, and islands, or even coupled (or cooperative) growth of the primary α and peritectic β phases, have been previously explained by nucleation-growth mechanisms. In a recent investigation on Cu-Sn, a new growth mechanism was conjectured on the basis of two-dimensional (2-D) optical microscopy and electron backscattered diffraction (EBSD) observations made in longitudinal sections. In the present contribution, synchrotron-based tomographic microscopy has been used to confirm this mechanism: α and β phases totally interconnected in three dimensions and bands (or islands) can result from an overlay mechanism, rather than from a nucleation events sequence. When the lateral growth of a new layer is too fast, an instability can lead to the formation of a lamellar structure as for eutectic alloy

    Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    Get PDF
    The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources

    Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Get PDF
    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS

    Constitutive behavior of as-cast A356

    Full text link
    The constitutive behavior of aluminum alloy A356 in the as-cast condition has been characterized using compression tests performed over a wide range of deformation temperatures (30-500{\deg}C) and strain rates (\approx0.1-10 /s). This work is intended to support the development of process models for a wide range of conditions including those relevant to casting, forging and machining. The flow stress behavior as a function of temperature and strain rate has been fit to a modified Johnson-Cook and extended Ludwik-Hollomon expression. The data has also been assessed with both the strain-independent Kocks-Mecking and Zener-Hollomon frameworks. The predicted plastic flow stress for each expression are compared. The results indicate that the extended Ludwik-Hollomon is best suited to describe small strain conditions (stage III hardening), while the Kocks-Mecking is best employed for large strain (stage IV). At elevated temperatures, it was found that the Zener-Hollomon model provides the best prediction of flow stress.Comment: 34 pages, 12 figure
    corecore