1,470 research outputs found
Quantum Fluctuations of Radiation Pressure
Quantum fluctuations of electromagnetic radiation pressure are discussed. We
use an approach based on the quantum stress tensor to calculate the
fluctuations in velocity and position of a mirror subjected to electromagnetic
radiation. Our approach reveals that radiation pressure fluctuations are due to
a cross term between vacuum and state dependent terms in a stress tensor
operator product. Thus observation of these fluctuations would entail
experimental confirmation of this cross term. We first analyze the pressure
fluctuations on a single, perfectly reflecting mirror, and then study the case
of an interferometer. This involves a study of the effects of multiple bounces
in one arm, as well as the correlations of the pressure fluctuations between
arms of the interferometer. In all cases, our results are consistent with those
previously obtained by Caves using different mehods.Comment: 23 pages, 3 figures, RevTe
Redundancy Strategies for a High Splitting Optically Amplified Passive Optical Network
Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.High splitting, optically amplified, passive optical networks (SuperPONs) are investigated in terms of redundancy provision and protection mechanisms. Options for redundancy, including the important special case of dual homing, are detailed, and it is determined as to which of these options (duplication of the feeder and first distribution section, and N+1 protection of the optical amplifiers in the amplified splitter) would be required to be provided to all attached users to facilitate appropriate availability of the basic telephony service. The distributed amplified splitter dual homing solution is found to outperform the single amplified splitter solution in terms of its survivability. The protection mechanisms necessary to automatically switch to the redundant provision are discussed and it is seen that with the aid of suitable regular precautionary procedures protection switching can generally be provided rapidly (<50 ms). Finally, an availability, and cost versus availability, study confirms the aforementioned redundancy assessment for fiber-to-the-home (FTTH) implementations, but shows fiber-to-the-curb (FTTC) as needing additional redundancyPeer reviewe
Mathematical and computational models of drug transport in tumours
The ability to predict how far a drug will penetrate into the tumour microenvironment within its pharmacokinetic (PK) lifespan would provide valuable information about therapeutic response. As the PK profile is directly related to the route and schedule of drug administration, an in silico tool that can predict the drug administration schedule that results in optimal drug delivery to tumours would streamline clinical trial design. This paper investigates the application of mathematical and computational modelling techniques to help improve our understanding of the fundamental mechanisms underlying drug delivery, and compares the performance of a simple model with more complex approaches. Three models of drug transport are developed, all based on the same drug binding model and parametrized by bespoke in vitro experiments. Their predictions, compared for a ‘tumour cord’ geometry, are qualitatively and quantitatively similar. We assess the effect of varying the PK profile of the supplied drug, and the binding affinity of the drug to tumour cells, on the concentration of drug reaching cells and the accumulated exposure of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution towards developing a useful drug transport modelling tool for informing strategies for the treatment of tumour cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Localization by disorder in the infrared conductivity of (Y,Pr)Ba2Cu3O7 films
The ab-plane reflectivity of (Y{1-x}Prx)Ba2Cu3O7 thin films was measured in
the 30-30000 cm-1 range for samples with x = 0 (Tc = 90 K), x = 0.4 (Tc = 35 K)
and x = 0.5 (Tc = 19 K) as a function of temperature in the normal state. The
effective charge density obtained from the integrated spectral weight decreases
with increasing x. The variation is consistent with the higher dc resistivity
for x = 0.4, but is one order of magnitude smaller than what would be expected
for x = 0.5. In the latter sample, the conductivity is dominated at all
temperatures by a large localization peak. Its magnitude increases as the
temperature decreases. We relate this peak to the dc resistivity enhancement. A
simple localization-by-disorder model accounts for the optical conductivity of
the x = 0.5 sample.Comment: 7 pages with (4) figures include
Recommended from our members
Sensitivity of the surface orographic gravity wave drag to vertical wind shear over Antarctica
The effects of vertical wind shear on orographic gravity wave drag derived previously from inviscid linear theory are evaluated using reanalysis data. Emphasis is placed on the relative importance of uniform and directional shear (associated with first and second vertical derivatives of the wind velocity), which are theoretically predicted, respectively, to reduce and enhance the surface drag. Two levels at which the wind derivatives are estimated are considered for evaluating the shear corrections to the drag: a height just above the parametrized boundary layer height in the ECMWF model (BLH), and a height of order the standard deviation of the subgrid-scale orography elevation (SDH), adopted by previous authors. A climatology of the Richardson number (Ri) computed for the decade 2006-2015 suggests that the Antarctic region has a high incidence of low Ri values, implying high shear conditions. Shear estimated at the BLH has a relatively modest impact on the drag, whereas shear estimated at the SDH has a stronger impact. Predicted drag enhancement is more widespread than drag reduction because terms involving second wind derivatives dominate the drag correction for a larger fraction of the time than terms involving first derivatives. A comparison of climatologies of the drag corrections for horizontally elliptical mountains (which represent anisotropic subgrid-scale orography in parametrizations) and axisymmetric mountains always results in drag enhancement over Antarctica, with a maximum during the JJA season, showing qualitative robustness to both calculation height and orography anisotropy. However, this enhancement is smaller when using elliptical instead of axisymmetric orography. This is because the shear vector is predominantly oriented along mountain ridges rather than across them when the orography is anisotropic
The Time-Reversal- and Parity-Violating Nuclear Potential in Chiral Effective Theory
We derive the parity- and time-reversal-violating nuclear interactions
stemming from the QCD theta term and quark/gluon operators of effective
dimension 6: quark electric dipole moments, quark and gluon chromo-electric
dipole moments, and two four-quark operators. We work in the framework of
two-flavor chiral perturbation theory, where a systematic expansion is
possible. The different chiral-transformation properties of the sources of
time-reversal violation lead to different hadronic interactions. For all
sources considered the leading-order potential involves known one-pion
exchange, but its specific form and the relative importance of short-range
interactions depend on the source. For the theta term, the leading potential is
solely given by one-pion exchange, which does not contribute to the deuteron
electric dipole moment. In subleading order, a new two-pion-exchange potential
is obtained. Its short-range component is indistinguishable from one of two
undetermined contact interactions that appear at the same order and represent
effects of heavier mesons and other short-range QCD dynamics. One-pion-exchange
corrections at this order are discussed as well.Comment: 39 pages, 8 figure
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Hippocampus, Amygdala and Basal Ganglia Based Navigation Control
In this paper we present a novel robot navigation system aimed at testing hypotheses about the roles of key brain areas in foraging behavior of rats. The key components of the control network are: 1. a Hippocampus inspired module for spatial localization based on associations between sensory inputs and places; 2. an Amygdala inspired module for the association of values with places and sensory stimuli; 3. a Basal Ganglia inspired module for the selection of actions based on the evaluated sensory inputs. By implementing this Hippocampus-Amygdala-Basal Ganglia based control network with a simulated rat embodiment we intend to test not only our understanding of the individual brain areas but especially the interaction between them. Understanding the neural circuits that allows rats to efficiently forage for food will also help to improve the ability of robots to autonomously evaluate and select navigation targets
Singular Fermi Liquids
An introductory survey of the theoretical ideas and calculations and the
experimental results which depart from Landau Fermi-liquids is presented.
Common themes and possible routes to the singularities leading to the breakdown
of Landau Fermi liquids are categorized following an elementary discussion of
the theory. Soluble examples of Singular Fermi liquids (often called Non-Fermi
liquids) include models of impurities in metals with special symmetries and
one-dimensional interacting fermions. A review of these is followed by a
discussion of Singular Fermi liquids in a wide variety of experimental
situations and theoretical models. These include the effects of low-energy
collective fluctuations, gauge fields due either to symmetries in the
hamiltonian or possible dynamically generated symmetries, fluctuations around
quantum critical points, the normal state of high temperature superconductors
and the two-dimensional metallic state. For the last three systems, the
principal experimental results are summarized and the outstanding theoretical
issues highlighted.Comment: 170 pages; submitted to Physics Reports; a single pdf file with high
quality figures is available from http://www.lorentz.leidenuniv.nl/~saarloo
- …
