19,663 research outputs found

    Seeing the invisible: from imagined to virtual urban landscapes

    Get PDF
    Urban ecosystems consist of infrastructure features working together to provide services for inhabitants. Infrastructure functions akin to an ecosystem, having dynamic relationships and interdependencies. However, with age, urban infrastructure can deteriorate and stop functioning. Additional pressures on infrastructure include urbanizing populations and a changing climate that exposes vulnerabilities. To manage the urban infrastructure ecosystem in a modernizing world, urban planners need to integrate a coordinated management plan for these co-located and dependent infrastructure features. To implement such a management practice, an improved method for communicating how these infrastructure features interact is needed. This study aims to define urban infrastructure as a system, identify the systematic barriers preventing implementation of a more coordinated management model, and develop a virtual reality tool to provide visualization of the spatial system dynamics of urban infrastructure. Data was collected from a stakeholder workshop that highlighted a lack of appreciation for the system dynamics of urban infrastructure. An urban ecology VR model was created to highlight the interconnectedness of infrastructure features. VR proved to be useful for communicating spatial information to urban stakeholders about the complexities of infrastructure ecology and the interactions between infrastructure features.https://doi.org/10.1016/j.cities.2019.102559Published versio

    Patient-Specific Fetal Dose Determination for Multi-Target Gamma Knife Radiosurgery: Computational Model and Case Report.

    Get PDF
    A 42-year-old woman at 29 weeks gestation via in vitro fertilization who presented with eight metastatic brain lesions received Gamma Knife stereotactic radiosurgery (GKSRS) at our institution. In this study, we report our clinical experience and a general procedure of determining the fetal dose from patient-specific treatment plans and we describe quality assurance measurements to guide the safe practice of multi-target GKSRS of pregnant patients. To estimate fetal dose pre-treatment, peripheral dose-to-focal dose ratios (PFRs) were measured in a phantom at the distance approximating the fundus of uterus. Post-treatment, fetal dose was calculated from the actual patient treatment plan. Quality assurance measurements were carried out via the extrapolation dosimetry method in a head phantom at increasing distances along the longitudinal axis. The measurements were then empirically fitted and the fetal dose was extracted from the curve. The computed and measured fetal dose values were compared with each other and associated radiation risk was estimated. Based on low estimated fetal dose from preliminary phantom measurements, the patient was accepted for GKSRS. Eight brain metastases were treated with prescription doses of 15-19 Gy over 143 min involving all collimator sizes as well as composite sector mixed shots. Direct fetal dose computation based on the actual patient's treatment plan estimated a maximum fetal dose of 0.253 cGy, which was in agreement with surface dose measurements at the level of the patient's uterine fundus during the actual treatment. Later phantom measurements also estimated fetal dose to be in the range of 0.21-0.28 cGy (dose extrapolation curve R2 = 0.998). Using the National Council on Radiation Protection and Measurements (NCRP) population-based model, we estimate the fetal risk of secondary malignancy, which is the primary toxicity after 25 weeks gestation, to be less than 0.01%. Of note, the patient delivered the baby via scheduled cesarean section at 36 weeks without complications attributable to the GKSRS procedure. GKSRS of multiple brain metastases was demonstrated to be safe and feasible during pregnancy. The applicability of a general patient-specific fetal dose determination method was also demonstrated for the first time for such a treatment

    Microscopic Aspects of Stretched Exponential Relaxation (SER) in Homogeneous Molecular and Network Glasses and Polymers

    Full text link
    Because the theory of SER is still a work in progress, the phenomenon itself can be said to be the oldest unsolved problem in science, as it started with Kohlrausch in 1847. Many electrical and optical phenomena exhibit SER with probe relaxation I(t) ~ exp[-(t/{\tau}){\beta}], with 0 < {\beta} < 1. Here {\tau} is a material-sensitive parameter, useful for discussing chemical trends. The "shape" parameter {\beta} is dimensionless and plays the role of a non-equilibrium scaling exponent; its value, especially in glasses, is both practically useful and theoretically significant. The mathematical complexity of SER is such that rigorous derivations of this peculiar function were not achieved until the 1970's. The focus of much of the 1970's pioneering work was spatial relaxation of electronic charge, but SER is a universal phenomenon, and today atomic and molecular relaxation of glasses and deeply supercooled liquids provide the most reliable data. As the data base grew, the need for a quantitative theory increased; this need was finally met by the diffusion-to-traps topological model, which yields a remarkably simple expression for the shape parameter {\beta}, given by d*/(d* + 2). At first sight this expression appears to be identical to d/(d + 2), where d is the actual spatial dimensionality, as originally derived. The original model, however, failed to explain much of the data base. Here the theme of earlier reviews, based on the observation that in the presence of short-range forces only d* = d = 3 is the actual spatial dimensionality, while for mixed short- and long-range forces, d* = fd = d/2, is applied to four new spectacular examples, where it turns out that SER is useful not only for purposes of quality control, but also for defining what is meant by a glass in novel contexts. (Please see full abstract in main text

    Picosecond time-resolved resonance Raman observation of the iso-CH2Cl-I and iso-CH2I-Cl photoproducts from the "photoisomerization" reactions of CH 2ICl in the solution phase

    Get PDF
    A preliminary pecosecond Stokes time-resolved resonance Raman investigation was made of the initial formation and subsequent decay of the photoproduct produced following 267 nm excitaiton of CH 2ClI in acetonitrile solution. A coparision was made between density-functional theroy computations for portable photoproduct species and the results from a femtosecond transient absorption study to Raman spectra. This comparision indicated that the iso-CH 2ClI was aminly produced and associated with the 460 nm transient absorption band.published_or_final_versio

    Increasing dominance of large lianas in Amazonian forests

    Get PDF
    Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7–4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests

    Controlling electron emission from the photoactive yellow protein chromophore by substitution at the coumaric acid group

    Get PDF
    Understanding how the interactions between a chromophore and its surrounding protein control the function of a photoactive protein remains a challenge. Here, we present the results of photoelectron spectroscopy measurements and quantum chemistry calculations aimed at investigating how substitution at the coumaryl tail of the photoactive yellow protein chromophore controls competing relaxation pathways following photoexcitation of isolated chromophores in the gas phase with ultraviolet light in the range 350-315 nm. The photoelectron spectra are dominated by electrons resulting from direct detachment and fast detachment from the 2(1)ππ* state but also have a low electron kinetic energy component arising from autodetachment from lower lying electronically excited states or thermionic emission from the electronic ground state. We find that substituting the hydrogen atom of the carboxylic acid group with a methyl group lowers the threshold for electron detachment but has very little effect on the competition between the different relaxation pathways, whereas substituting with a thioester group raises the threshold for electron detachment and appears to 'turn off' the competing electron emission processes from lower lying electronically excited states. This has potential implications in terms of tuning the light-induced electron donor properties of photoactive yellow protein

    Human immunodeficiency virus rebound after suppression to < 400 copies/mL during initial highly active antiretroviral therapy regimens, according to prior nucleoside experience and duration of suppression

    Get PDF
    This study evaluated 1433 human immunodeficiency virus (HIV)-infected patients starting highly active antiretroviral therapy (HAART), 409 (28%) of whom had prior nucleoside experience and achieved an HIV load of <400 copies/mL by 24 weeks of therapy. Three hundred seven patients experienced virus rebound during a total of 2773.3 person-years of follow-up. There was a higher rate of virus rebound among the patients with pre-HAART nucleoside experience (relative hazard [RH], 2.86; 95% confidence interval, 2.22-3.84; P < .0001) and a decreasing rate of virus rebound with increasing duration of virus suppression (i.e., time since achieving a virus load of <400 HIV RNA copies/mL) among both the nucleoside-experienced and naive patients (P < .0001), but the difference between the groups persisted into the third year of follow-up (P = .0007). Even patients who had experienced <2 months of nucleoside therapy before beginning HAART had an increased risk of virus rebound (RH, 1.95; P = .009). It appears that only a small period of pre-HAART nucleoside therapy is sufficient to confer a disadvantage, in terms of risk of virus rebound, that persists for several years

    Resonance raman characterization of the forms of ground-state 8-substituted 7-hydroxyquinoline caged acetate compounds in aqueous solutions

    Get PDF
    Monday Poster Session: Resonance Raman in Biological and Chemical Systems (MP22) - Poster Number: 0978-substituted 7-hydroxyquinolines, like 8-chloro-7-hydroxyquinoline (CHQ) and 8-cyano-7-hydroxyquinoline (CyHQ), are able to be useful for 1PE and 2PE and their acetate acids CHQ−OAc and CyHQ−OAc were also able to undergo photolysis reactions in neutral aqueous buffer solutions. To examine the substituent effect on the relative populations of the forms of the ground state species of 8-substituted 7-hydroxyquinolines, ultraviolet absorption and resonance Raman spectroscopy experiments were done for CHQ–OAc and CyHQ–OAc in differnt solutions.postprintThe 22nd International Conference on Raman Spectroscopy (ICORS 2010), Boston, MA., 8-13 August 2010

    Electromagnetically-Induced-Transparency-Like Effect in the Degenerate Triple-Resonant Optical Parametric Amplifier

    Full text link
    We investigate experimentally the absorptive and dispersive properties of triple-resonant optical parametric amplifier OPA for the degenerate subharmonic field. In the experiment, the subharmonic field is utilized as the probe field and the harmonic wave as the pump field. We demonstrate that EIT-like effect can be simulated in the triple-resonant OPA when the cavity line-width for the harmonic wave is narrower than that for the subharmonic field. However, this phenomenon can not be observed in a double-resonant OPA. The narrow transparency window appears in the reflected field. Especially, in the measured dispersive spectra of triple-resonant OPA, a very steep variation of the dispersive profile of the subharmonic field is observed, which can result in a slow light as that observed in atomic EIT medium.Comment: 10 pages, 4 figures, appear in Opt. Let

    The nature of the methanol maser ring G23.657-00.127

    Full text link
    Methanol masers are associated with young high-mass stars and are an important tool for investigating the process of massive star formation. The recently discovered methanol maser ring in G23.657-00.127 provides an excellent ``laboratory'' for a detailed study of the nature and physical origin of methanol maser emission, as well as parallax and proper motion measurements. Multi-epoch observations of the 12.2 GHz methanol maser line from the ring were conducted using the Very Long Baseline Array. Interferometric observations with milliarcsecond resolution enabled us to track single maser spots in great detail over a period of 2 years. We have determined the trigonometric parallax of G23.657-00.127 to be 0.313+/-0.039 mas, giving a distance of 3.19{+0.46}{-0.35} kpc. The proper motion of the source indicates that it is moving with the same circular velocity as the LSR, but it shows a large peculiar motion of about 35 km/s toward the Galactic center.Comment: 6 pages, 3 figures, accepted for publication in A&
    corecore